首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 106 毫秒
1.
采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散谱仪(EDS)分析粉煤灰中铁组分矿物组成和分布形态,对高铁粉煤灰颗粒电磁参数及复合高铁粉煤灰水泥浆体的吸波性能进行了试验研究.结果表明,粉煤灰中富集在球形颗粒表面的各种微细氧化铁晶体,是高铁粉煤灰产生电磁损耗的物质基础;高铁粉煤灰颗粒具有较高的介电常数和一定的磁导率,是以介电损耗型为主的电磁波有效损耗介质;高铁粉煤灰水泥基复合材料在2~8GHz波段范围内具有吸波性能,其最小反射率为-13.01dB,同时吸波能力可能与材料电导率有关.  相似文献   

2.
通过改变空心粉煤灰微珠、铁氧体、炭黑的配比,分析了影响混凝土电磁吸收效能的主要因素,并探讨了空心粉煤灰微珠、铁氧体和炭黑的加入对水泥基复合材料电磁吸收性能的影响机制。结果表明:8~18GHz频率范围内,空心粉煤灰微珠是影响水泥基复合材料吸波性能的最主要因素,最佳水平组合为20wt%铁氧体、20wt%粉煤灰、10vol%炭黑,-10dB吸收带宽可达10GHz且明显优于无粉煤灰样品,其机制在于空心粉煤灰微珠的掺入同时改善了材料表面透射性能和介电损耗。  相似文献   

3.
采用HP-8510B微波矢量网络分析仪测试了超细SiC、SiC晶须和纳米SiC的电磁参数,并对三者的电磁参数进行了比较,结果表明粒径较小的纳米SiC的电磁参数在大部分所测试频段上均高于其余二者.根据电磁波传输线理论计算了3种SiC吸收剂的反射率曲线,发现纳米SiC的吸波性能明显优于超细SiC和SiC晶须.纳米SiC吸收剂的吸收峰随着厚度的增加而增大,谐振频率随着厚度的增加而向低频转移.纳米SiC吸收剂在涂层厚度为5.0mm时,吸收峰值可达-8.45dB,谐振频率为7.12GHz,小于-5dB的频宽为1.8GHz.  相似文献   

4.
项光鸿  沈勇  倪哲伟  陈名扬 《功能材料》2021,52(5):5188-5194
采用溶剂热和水热两步法制备了空心花状MoS2/Fe3 O4复合物.通过XRD、XPS、SEM和TEM测试表征了Fe3 O4和MoS2单组分材料与其复合物的结构特性并利用矢量网络分析仪(VNA)模拟了不同厚度下样品的吸波性能.结果表明,在样品与石蜡的混合质量比为1:1时,复合物表现出更加优异的吸收强度、有效吸收带宽(<-...  相似文献   

5.
掺杂 TiO2水泥的吸波性能与力学性能研究   总被引:2,自引:1,他引:2  
研究了纳米吸波材料与硅酸盐水泥复合材料的吸波性能和力学性能,讨论并分析了纳米氧化钛的用量、分散方式、试样厚度对电磁波反射衰减的关系和纳米氧化钛对水泥基复合材料的力学性能影响。实验结果表明:在8-18GHz频率范围内,纳米氧化钛与水泥制成的复合材料的反射率均小于-7dB,在16.24GHz时其反射率达-16.34(m,反射率小于-10dB的带宽达4.5GHz,且其力学性能明显优于水泥净浆。  相似文献   

6.
为了研究粉煤灰在水泥基材料中的吸收电磁波性能,将Ⅲ级粉煤灰掺入水泥净浆中,制成厚度为15~30mm的试样,分别进行吸波性能测试.结果显示,粉煤灰在16GHz附近有一个14.5dB的吸收峰;掺入粉煤灰的水泥净浆,在低频率区1~4GHz范围内,有6~10dB的吸收峰;在高频率区4~18GHz内,一般只有4~6dB的吸收峰.掺量为30%、厚度为30mm的试样在17GHz附近有一个8.5dB的吸收峰.  相似文献   

7.
铁氧体水泥基复合材料的电磁特性研究   总被引:2,自引:1,他引:1  
材料电磁特性的研究对调整和优化材料电磁参数从而达到良好吸收起着至关重要的作用.采用XRD和IR分析了铁氧体与水泥基之间的相互作用,讨论了铁氧体掺量、粒径大小对复合材料电磁参数、反射率的影响,并运用电磁媒质混合定则和传输线理论对其进行了评价.结果表明,铁氧体与水泥基体间存在相互作用,且此作用对材料的电磁参数有直接影响;粒径的变化有利于磁导率虚部的提高,但更显著的是对材料吸收频段的移动作用;铁氧体水泥基复合体系并不完全服从电磁媒质混合理论,微扰理论在该体系内并不适用.  相似文献   

8.
通过湿化学技术法制备了La2O3:Eu3 纳米晶充填碳纳米管复合材料.高分辨透射电镜观测到充填碳纳米管的La2O3:Eu3 纳米晶在碳纳米管内呈准连续状态分布.HP8722ES矢量网络分析仪测量了样品在2~18GHz频率范围内的复介电常数和复磁导率.材料反射率损耗(R.L.)、匹配频段(fm)及匹配厚度(dm)采用吸收屏理论公式计算.结果表明,样品反射率随吸收层匹配厚度的增大,吸收峰向低频方向迁移并有窄化的趋势.吸收层在X波段具有较好的吸波效果.当吸收层匹配厚度为dm=9.0mm时,在10.6~12.8GHz频段内,反射衰减最大达-25.64dB,反射衰减<-5dB的频宽达2.21GHz.  相似文献   

9.
雷达隐身技术是当前世界各国研究的热点问题,而隐身材料性能的好坏是实现雷达隐身技术的关键。用圆形同轴试样波导法测试了氧化钐、碳纳米管及其两者的复合物在1~18GHz的电磁参数,采用弓形法测试了3种涂层的雷达波反射曲线,并验证了其雷达波反射曲线与电磁参数曲线的一致性。  相似文献   

10.
国爱丽  高日 《功能材料》2012,43(Z1):87-90,93
利用涂挂法,分别在粉煤灰漂珠和闭孔珍珠岩表面涂挂石墨和铁氧体,通过扫描电镜对比改性前后漂珠和珍珠岩表面的微观变化.研究表明石墨和铁氧体在连续釉化面与特殊蜂窝结构的相间的珍珠岩颗粒表面分布均匀,形成了谐振腔吸波体.改性漂珠和珍珠岩分别与水泥基材料复合,形成吸波水泥基复合材料.采用RCS法测量各复合水泥基材料对S~C波段和X~Ku波段的电磁波反射率,研究复合水泥基材料的吸波效能.研究表明与涂挂法改性漂珠相比,涂挂法改性闭孔珍珠岩能有效提高水泥基材料的吸波效能,拓宽了一10dB带宽,具有进一步实际应用研究的意义.  相似文献   

11.
先水热合成MoS2/CoFe2O4纳米复合吸波材料,再通过合理的物料配比并使用无水葡萄糖作为碳源和还原剂,使MoS2/CoFe2O4复合材料在氮气氛中还原为MoS2/CoFe/C三元纳米复合材料。对这种复合材料的形貌、相结构及电磁参数进行表征、模拟分析其最佳匹配厚度和吸波性能,研究了碳源浓度对复合材料的组成和性能的影响并根据弛豫理论讨论其吸波机制。结果表明,厚度为3 mm的这种复合材料在12.4 GHz处的最低反射损耗可达-42.9 dB;厚度为4 mm时低于-10 dB的频带宽度可达7.1 GHz。  相似文献   

12.
为改善氧化石墨烯(GO)/Fe3O4复合材料的分散程度,利用三苯基膦(PPh3)对GO表面进行功能化改性得到改性氧化石墨烯(GOP),然后采用共沉淀法一步合成GOP/Fe3O4复合材料。通过场发射SEM、高分辨TEM、XRD、FTIR、Raman和VSM对GOP/Fe3O4复合材料的形貌、结构和磁性能进行表征。利用矢量网络分析仪(PNA)测试了GOP/Fe3O4复合材料的电磁参数并模拟计算其对电磁波的吸收性能。结果显示:GOP/Fe3O4复合材料的最大电磁波吸收强度值达到-25.4 dB,有效吸收频宽为6.0 GHz,较未改性GO/Fe3O4复合材料均有大幅度提高。   相似文献   

13.
采用溶胶-凝胶自蔓延法制备了Ba3(Zn0.4Co0.6)2Fe24O41铁氧体粉末,先将样品在450℃退火2h,然后将其分别在950、1100、1150、1200、1260℃下热处理5h。利用XRD和微波矢量网络分析仪对产物的晶体结构、X波段的电磁性质及其吸波性能进行了表征。实验表明,1200℃和1260℃热处理后的样品主相为六角Z相结构,并且在整个所测频段内都具有很大的磁导率虚部,后者还具有很高的磁导率实部;1mm厚的上述两样品在X波段内其反射功率损耗都在20dB以上,1200℃热处理后的样品反射功率损耗的最大值达43.112dB,上述两样品具有宽频大功率损耗特性,是X波段较为理想的微波吸收剂。  相似文献   

14.
SiO_2含量对氧化铁基Fe_2O_3-SiO_2二元复合干凝胶性能的影响   总被引:1,自引:0,他引:1  
以水合氯化铁和正硅酸乙酯为前驱物,通过溶胶-凝胶法制备不同SiO_2含量的氧化铁基Fe_2O_3-SiO_2二元复合凝胶,利用冷冻干燥法对凝胶进行干燥得到复合干凝胶。分别采用BET、IR和SEM对复合凝胶的比表面积、孔结构、红外吸收峰和表面形貌进行分析。结果表明,复合凝胶的比表面积和孔体积随着SiO_2含量的增加而增加...  相似文献   

15.
K.X. Song 《Materials Letters》2007,61(16):3357-3360
Microwave dielectric characteristics of alumina ceramics with yttria addition were investigated. The sintering temperature was lowered, and the dielectric constant (εr) did not remarkably change by adding yttria. The microwave dielectric loss (tan δ) increased from 8.4 × 10− 5 to 2.2 × 10− 4, due to the presence of Al5Y3O12 secondary phase. The grain size had significant effects on the dielectric loss, and there was an optimum grain size where the dielectric loss reached the minimum.  相似文献   

16.
静电纺丝技术是一种新颖、高效且简单的制备连续纳米纤维的方法,纳米复合纤维膜的优异特点赋予了纳米吸波剂新的吸波通道。本文采用静电纺丝工艺制备Fe3O4/PEK-C纳米复合纤维膜,利用SEM和TGA表征纳米复合纤维膜的微观形貌和热稳定性,用矢量网络分析仪测试样品在8.2~12.4 GHz的电磁参数与吸波性能。结果表明,Fe3O4/PEK-C纳米复合纤维膜呈现出超细纤维彼此交织构成的立体网络结构,其热稳定性、复介电常数和复磁导率均随着Fe3O4含量的增加而增加,介电损耗和磁损耗得到加强。当纳米复合纤维膜的厚度为1.8 mm时,其反射损耗在整个测试波段均处于-5 dB以下,-10 dB以下有效吸收频宽为2 GHz,频率在8.6 GHz处吸收强度达到最大值-15.4 dB。预期可作为隐身复合材料的吸波功能层。  相似文献   

17.
Preparation and characterization of porous ultrafine Fe2O3 particles   总被引:1,自引:0,他引:1  
Porous ultrafine Fe2O3 particles were prepared by homogeneous precipitation method. Fe3+ and urea were chosen as starting materials and anionic surfactant as the template. It is shown that the reaction results in the precipitation of a gelatinous hydrous iron oxide/surfactant mixture, which gives ultrafine Fe2O3 particles after drying and calcinations. The products were characterized by XRD, TEM, TG/DTA and BET. Conventional XRD patterns show that the products are mixture of γ-Fe2O3 and α-Fe2O3 phase after being sintered at 350 °C, and γ-Fe2O3 transforms entirely to α-Fe2O3 when sintered at 650 °C. The low-angle XRD patterns indicate that the mesostructure can only exist between 350 and 400 °C. TEM results show that the Fe2O3 particles have diameters of about 30 nm and lengths ranging from 100 to 120 nm; in each particle, there are several vermiculate-like mesopores with diameter of about 20-25 nm. The BET surface areas in excess of 50 m2/g are obtained after calcinations at 350 °C. The BJH desorption average pore width is around 22 nm, which is in agreement with the TEM results. The results show that anionic surfactant and sintering temperature are important to obtain this special morphology.  相似文献   

18.
薄、轻、宽、强是人们对高效电磁波吸收材料的追求。用食品级柠檬酸铁与蔗糖经过水热反应,高温煅烧制备Fe/Fe_(3)C/Fe_(3)O_(4)@C磁性微球,并通过改变柠檬酸铁与蔗糖的摩尔比,探究柠檬酸铁的含量对复合材料吸波性能的影响,有效地调控电磁参数,从而优化阻抗匹配。实验结果表明,当柠檬酸铁与蔗糖的摩尔比为5∶3时,具有较好的吸波性能:当厚度为2.5 mm时,最小反射损耗为-50.17 dB,小于-10 dB的有效吸收频宽为3.52 GHz,优异的电磁波吸收性能主要得益于微球丰富的界面、孔状结构和Fe/Fe_(3)C/Fe_(3)O_(4)磁学性能的协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号