首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present thermogravimetric and differential scanning calorimetric studies of PtO \(_2\) powders measured in different atmospheres. In synthetic air a mass loss of 11.4 % is found at the decomposition temperature \(T_\mathrm {D}\)  = 595  \(^{\circ }\hbox {C}\) which can be attributed to the reduction of PtO \(_2\) . In a helium atmosphere the mass loss is 12.0 % and is found at 490  \(^{\circ }\hbox {C}\) . Subsequent heating in air leads to another oxidation process above \(T_\mathrm {D}\) and a reduction at 800  \(^{\circ }\hbox {C}\) . The second oxidation and reduction process is strongly suppressed when the powder is heated in He. The remaining mass above \(T_\mathrm {D}\) does not comply with a reduction path PtO \(_2 \rightarrow \) PtO \(\rightarrow \) Pt. Differential scanning calorimetry shows an endothermic reaction at \(T_\mathrm {D}\) in synthetic air as well as in helium which corresponds with the mass loss. These measurements imply that the powder can be assigned to be \(\beta \) -PtO \(_2\) . Furthermore, catalytic activity of the PtO \(_2\) powder is evidenced by mass spectrometry to be present below 460  \(^{\circ }\hbox {C}\) . Finally, the impact of these findings on the stability of platinum resistance thermometers is discussed.  相似文献   

2.
Inhomogeneities are known to develop within thermoelements exposed to elevated temperatures, resulting in temperature measurement errors. While the Seebeck coefficient drift in base-metal thermocouples due to aging at temperatures over \(200\,^{\circ }\mathrm{C}\) has been extensively investigated, there have been very few investigations into possible Seebeck changes at lower temperatures. Despite warnings about possible effects, most practitioners assume changes in homogeneity are either not significant or not able to develop at temperatures less than \(200\,^{\circ }\mathrm{C}\) . This study reports on measurements of inhomogeneities in base-metal thermocouples arising from heat treatment at temperatures in the region of \(200\,^{\circ }\mathrm{C}\) . Thermoelectric scans of thermocouples were carried out following exposure of a range of mineral-insulated metal-sheathed base-metal thermocouples, from two large manufacturers, of Types E, J, K, N, and T, to either a linear-gradient furnace within the range of \(100\,^{\circ }\mathrm{C}\) to \(320\,^{\circ }\mathrm{C}\) or uniform temperature zones of \(100\,^{\circ }\mathrm{C}\) , \(150\,^{\circ }\mathrm{C}\) , and \(200\,^{\circ }\mathrm{C}\) . The experiments reveal noticeable drift in all base-metal types for temperatures as low as \(100\,^{\circ }\mathrm{C}\) and exposure times as short as 1 h. The most sensitive thermoelement alloys appear to be Constantan, Alumel, and Nicrosil. It is concluded that the common working assumption that base-metal thermocouples suffer no thermally induced changes in the Seebeck coefficient below \(200\,^{\circ }\mathrm{C}\) is false. This observation has significant implications for many high-stability monitoring and control systems reliant on base-metal thermocouples that operate in the range of \(100\,^{\circ }\mathrm{C}\) to \(200\,^{\circ }\mathrm{C}\) . Additionally, thermoelectric scanning of base-metal thermocouples should be carried out at temperatures well below \(150\,^{\circ }\mathrm{C}\) to avoid erasure of strain effects or imprinting of new thermal signatures.  相似文献   

3.
Temperature coefficients of the refractive index ( \(\mathrm{d}n/\mathrm{d}T\) ) in the \(25\,^{\circ }\mathrm{C}\) to \(35\,^{\circ }\mathrm{C}\) temperature interval for hydrocarbon mixtures containing as many as 14 compounds were investigated in this work. The measured \(-\mathrm{d}n/\mathrm{d}T\) of the mixtures were compared with calculations based on the values for each compound and their concentrations. Differences of about 1 % between measured and calculated values were observed for all mixtures. The additivity of \(-\mathrm{d}n/\mathrm{d}T\) for these hydrocarbons enables preparation of surrogate fuels that are formulated to have properties like those of specific diesel fuels.  相似文献   

4.
A kinetic and thermodynamic study of selected calcite marble samples from Lesser Himalayas has been performed using thermogravimetric and differential thermal analyses at heating rates of \(10\,^{\circ }\mathrm{C}\,{\cdot }\min ^{-1}\) and \(30\,^{\circ }\mathrm{C}\,{\cdot }\min ^{-1}\) . The minero-petrography of calcite grains, phase analysis, chemical analysis, and minor impurities determination were carried out using thin-section polarized light microscopy, X-ray diffraction, X-ray fluorescence, and electron microprobe analysis, respectively. The calcite content of the investigated marble samples varied from 97.50 mass% to 98.70 mass%. The activation energy, \(E_\mathrm{a}\) , for the decomposition process increased from \(158.6\,\mathrm{kJ}\,{\cdot }\mathrm{mol}^{-1}\) to \(179.4\,\mathrm{kJ}\,{\cdot }\,\mathrm{mol}^{-1}\) and from \(214.1\,\mathrm{kJ}\,{\cdot }\, \mathrm{mol}^{-1}\) to \(232.8\,\mathrm{kJ}\,{\cdot }\, \mathrm{mol}^{-1}\) for heating rates of \(10\,^{\circ }\mathrm{C}\,{\cdot }\, \min ^{-1}\) and \(30\,^{\circ }\mathrm{C}\,{\cdot }\, \min ^{-1}\) , respectively, with decreasing calcite content. The activation energy values obtained in the present study were in good agreement with previous studies.  相似文献   

5.
A thickness shear quartz resonator technique is described to measure the shear viscosity of low-viscosity liquids in the frequency range from 6 MHz to 130 MHz. Examples of shear-viscosity spectra in that frequency range are presented to show that various molecular processes are accompanied by shear-viscosity relaxation. Among these processes are conformational variations of alkyl chains, with relaxation times \(\tau _{\eta }\) of about 0.3 ns for \(n\) -pentadecane and \(n\) -hexadecane at 25  \(^{\circ }\) C. These variations can be well represented in terms of a torsional oscillator model. Also featured briefly are shear-viscosity relaxations associated with fluctuations of hydrogen-bonded clusters in alcohols, for which \(\tau _{\eta }\) values between 0.3 ns ( \(n\) -hexanol) and 1.5 ns ( \(n\) -dodecanol) have been found at 25  \(^{\circ }\) C. In addition, the special suitability of high-frequency shear-viscosity spectroscopy to the study of critically demixing mixtures is demonstrated by some illustrative examples. Due to slowing, critical fluctuations do not contribute to the shear viscosity at sufficiently high frequencies of measurements so that the non-critical background viscosity \(\eta _\mathrm{bg}\) of critical systems can be directly determined from high-frequency shear-viscosity spectroscopy. Relaxations in \(\eta _\mathrm{bg}\) appear also in the shear-viscosity spectra with, for example, \(\tau _{\eta }\,\approx \) 2 ns for the critical triethylamine–water binary mixture at temperatures between 10  \(^{\circ }\) C and 18  \(^{\circ }\) C. Such relaxations noticeably influence the relaxation rate of order parameter fluctuations. They may be also the reason for the need of a special mesoscopic viscosity when mutual diffusion coefficients of critical polymer solutions are discussed in terms of mode-coupling theory.  相似文献   

6.
In this paper, the validation of the water dew-point generator with methane as a carrier gas in the temperature range from \(-41\,^{\circ }\hbox {C}\) to \(+15\,^{\circ }\hbox {C}\) and at pressures up to 6 MPa is reported. During the validation, the generator was used with both nitrogen and methane to investigate the effect of methane on the generator and the chilled mirror dew-point meters. The effect of changing the flow rate and the dew-point temperature of the gas entering the generator, on the gas exiting the generator was investigated. As expected, methane at high pressures created hydrates in combination with water and low temperatures, thus limiting the temperature range of the generator to \(+8\,^{\circ }\hbox {C}\) to \(+15\,^{\circ }\hbox {C}\) at its maximum operating pressure of 6 MPa. A lower operating pressure extended the temperature range; for example, at 3 MPa, the temperature range was already extended down to \(-15\,^{\circ }\hbox {C}\) , and at 1 MPa, the range was extended down to \(-41\,^{\circ }\hbox {C}\) . The validation showed that, in its operating range, the generator can achieve with methane the same standard uncertainty of \(0.02\,^{\circ }\hbox {C}\) frost/dew point already demonstrated for nitrogen and air carrier gases.  相似文献   

7.
A blackbody comparator for thermocouple calibration in the temperature range from \(960\,^{\circ }\hbox {C}\) to \(1500\,^{\circ }\hbox {C}\) has previously been developed at the Centre for Metrology and Accreditation (MIKES). The calibration system is based on direct comparison of thermocouples and a radiation thermometer. In this article, the blackbody comparator is exploited by comparing an absolute calibrated irradiance mode filter radiometer and a linear pyrometer calibrated according to the International Temperature Scale of 1990 (ITS-90) to each other in the temperature range from \(1000\,^{\circ }\hbox {C}\) to \(1500\,^{\circ }\hbox {C}\) . The results of the comparison are in agreement within uncertainties ( \(k = 2\) ). Furthermore, thermal gradients in the blackbody comparator are studied by means of numerical simulation, as the gradients were found to be the major source of uncertainty in previous work. A thermal model was constructed with COMSOL software, and the radial and longitudinal gradients were studied in the comparator. The results of the modeling are in agreement with the uncertainty determination carried out in previous work, but the gradients still remain a significant uncertainty contribution. The validation of the calibration system was completed by comparing calibration results obtained with the system for a Pt/Pd thermocouple to calibration results reported by the National Physical Laboratory (NPL), UK. The results of the comparison agree within the expanded uncertainty ( \(k = 2\) ) of the comparison.  相似文献   

8.
A new relative-humidity setup was developed for calibrating sensors in the temperature range from \(-40\,^{\circ }\mathrm{C}\) up to \(180\,^{\circ }\mathrm{C}\) and at pressures down to 700 hPa and up to 0.5 MPa. The setup is based on the chamber-in-chamber model: a small additional chamber is positioned inside a climatic chamber. While the climatic chamber is used to generate the air temperature, a pre-conditioned gas from outside the climatic chamber delivers the required humidity in the new pressure chamber. Validation of the setup at atmospheric pressure showed relative-humidity uncertainties of 0.2 %rh at 5 %rh over the whole temperature range and 0.4 %rh at 95 %rh for temperatures above \(0\,^{\circ }\mathrm{C}\) . Below \(0\,^{\circ }\mathrm{C}\) , the maximum uncertainty increases to 0.9 %rh due to the influence of the temperature homogeneity. The temperature uncertainty of the new setup is between \(0.10\,^{\circ }\mathrm{C}\) and \(0.21\,^{\circ }\mathrm{C}\) . Five commercially available relative-humidity sensors, of different type and manufacturer and all suitable for high temperatures, were calibrated in the new setup. The measurements showed deviations outside the stated specifications of the manufacturer and the need of traceable calibration facilities.  相似文献   

9.
Viscometric studies of polyethylene glycol (PEG 35000) aqueous solutions are presented. The temperature and concentration dependences of the PEG solution viscosities were studied in the range from \(10\,^{\circ }\mathrm{C}\) to \(60\,^{\circ }\mathrm{C}\) and \(5\,\mathrm{mg}{\cdot } \mathrm{ml}^{-1}\) to \(50\, \mathrm{mg}{\cdot } \mathrm{ml}^{-1}\) , respectively. The intrinsic viscosity and the Huggins coefficient have been calculated from the data. The results exclude the recently reported anomalous behavior of these quantities. The measured viscosity is also used to estimate the hydrodynamic and gyration radii of the polymers.  相似文献   

10.
The thermal expansion behavior and electrical resistivity of BaTiO \(_{3}\) ceramics with different grain sizes were investigated. When they were heated and subsequently cooled in the range from 25  \(^{\circ }\) C to 200  \(^{\circ }\) C, the expansion and contraction curves of BaTiO \(_{3}\) ceramics with grain sizes of 600 nm and 1500 nm were not matched well to each other, and abnormal contraction and expansion behaviors were observed. For 30 nm and 150 nm BaTiO \(_{3}\) ceramics, the expansion and contraction curves basically are straight lines during heating. The linear thermal expansion coefficients ( \(\alpha _\mathrm{L}\) ) and the electrical resistivity of BaTiO \(_{3}\) ceramics were also measured. Experimental results showed that the value of \(\alpha _\mathrm{L}\) increases and the electrical resistivity decreases gradually with reducing grain size. This phenomenon can be attributed to the combination effect of the grain boundary and oxygen vacancies.  相似文献   

11.
The densities of solid and liquid Cu \(_{48}\) Zr \(_{52}\) and the viscosity of the liquid were measured in a containerless electrostatic levitation system using optical techniques. The measured density of the liquid at the liquidus temperature (1223 K) is (7.02 \(\pm \) 0.01) g \(\cdot \) cm \(^{-3}\) and the density of the solid extrapolated to that temperature is (7.15 \(\pm \) 0.01) g \(\cdot \) cm \(^{-3}\) . The thermal expansion coefficients measured at 1223 K are (6.4 \(\pm \) 0.1) \(\,\times \,10^{-5}\) K \(^{-1}\) in the liquid phase and (3.5 \(\pm \) 0.3) \(\,\times \,10^{-5}\) K \(^{-1}\) in the solid phase. The viscosity of the liquid, measured with the oscillating drop technique, is of the form \(A\exp \left[ \left( {{E}_{0}}+{{E}_{1}}\left( 1/T-1/{{T}_{0}} \right) \right) \times \left( 1/T-1/{{T}_{0}} \right) \right] \) , where \({{T}_{0}}=1223\) K, \(A= (0.0254 \pm 0.0004)\) Pa \(\cdot \) s, \({{E}_{0}}\) =  (8.43 \(\pm \) 0.26) \(\,\times \,10^3\) K and \({{E}_{1}}\) =  (1.7 \(\pm \) 0.2) \(\,\times 10^7\) K \(^{2}\) .  相似文献   

12.
At the National Metrology Institute of Japan (NMIJ), the triple points of \(^{20}\) Ne and \(^{22}\) Ne were realized using modular sealed cells, manufactured by the Istituto Nazionale di Ricerca Metrologica (INRiM) in Italy to measure the difference of the triple-point temperatures of \(^{20}\) Ne and \(^{22}\) Ne. Standard platinum resistance thermometers (SPRTs) were used that were calibrated by NMIJ on the International Temperature Scale of 1990 (ITS-90). In previous reports, sealed cells of \(^{20}\) Ne and \(^{22}\) Ne were mounted one at a time in a cryostat and their triple points were realized in separate cool-downs (the single-cell measurement). In this study, first, the triple point was realized using the single-cell measurement for \(^{20}\) Ne and \(^{22}\) Ne cells. Second, the \(^{20}\) Ne and \(^{22}\) Ne cells were mounted together on the same copper block and their triple points were realized subsequently one after the other in the same cool-down of the cryostat (the double-cell measurement). The melting curves observed by the single-cell and the double-cell measurements were almost identical for each cell. The difference of the triple-point temperatures between the two cells, \(^{22}T -^{20}\!T\) , was estimated, not only using the subrange of SPRTs defined in the ITS-90 from 13.8033 K to 273.16 K (subrange 1) but also that defined from 24.5561 K to 273.16 K (subrange 2). The difference in \((^{22}T-^{20}\!\!T)\) between the subranges 1 and 2 is within 0.06 mK, which is caused by the subrange inconsistency in the ITS-90. The standard uncertainty in \((^{22}T-^{20}\!T)\) due to the subrange inconsistency is estimated to be 0.017 mK. After correction for the effects of impurities and other isotopes in the \(^{20}\) Ne and \(^{22}\) Ne cells, the difference in the triple-point temperatures between pure \(^{20}\) Ne and pure \(^{22}\) Ne is estimated to be 0.146 64 (5) K on subrange 1, which is consistent within the uncertainty with the former studies. When \(^{22}T-^{20}\!T\) for pure \(^{20}\) Ne and pure \(^{22}\) Ne is estimated on subrange 2, \(^{22}T-^{20}\!\!T\) becomes 0.146 60 (5), which agrees very well with the former reports of INRiM evaluating \(^{22}T-^{20}\!T\) on subrange 2.  相似文献   

13.
14.
Let \(q\) be a power of a prime number \(p\) . Let \(n\) be a positive integer. Let \(\mathbb {F}_{q^n}\) denote a finite field with \(q^n\) elements. In this paper, we consider the existence of the some specific elements in the finite field \(\mathbb {F}_{q^n}\) . We get that when \(n\ge 29\) , there are elements \(\xi \in \mathbb {F}_{q^n}\) such that \(\xi +\xi ^{-1}\) is a primitive element of \(\mathbb {F}_{q^n}\) , and \(\mathrm{Tr}(\xi ) = a, \mathrm{Tr}(\xi ^{-1}) = b\) for any pair of prescribed \(a, b \in \mathbb {F}_q^*\) .  相似文献   

15.
It can be noted that the germanate glass–ceramic is a functional material with excellent thermal stability which can be used in optical devices. The temperature-dependent effective thermal conductivities of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) glass–ceramics from 295.5 K to 780 K are determined using a \(3\omega \) method. One of the main advantages for the \(3\omega \) method is to diminish radiation errors effectively when the temperature is as high as 1000 K. Thermal conductivities of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) increase with a rise in temperature. Effective thermal conductivities of a sample increase from \(1.55~\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 295.5 K to \(7.64~\hbox {W}\cdot \,\hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 698.1 K. The effective thermal conductivity of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) glass–ceramic increases with a rise of temperature. This investigation can be used as a basis for the measurement of thermal properties of ceramic materials at higher temperature.  相似文献   

16.
We recently proposed the idea of a novel sort of superconducting detector, i.e., a current-biased kinetic inductance detector (CB-KID). This detector is different from a current-biased transition edge detector studied previously, and is able to sense a change in kinetic inductance \(L_k\) given by \(L_{k} = \Lambda _{k}l/S = m_{s}l/n_{s}{q_{s}}^{2}S\) ( \(\Lambda _{k}\) ; kinetic inductivity, \(m_s\) ; mass of Cooper pair, \(n_s\) ; density of Cooper pairs, \(q_s\) ; charge of Cooper pair, \(l\) ; length of device, \(S\) ; cross sectional area) under a constant dc bias current \(I_b\) . In the present work, we first extend this idea to construct a multi-channel CB-KIDs array made of 200-nm-thick MgB \(_2\) thin-film meanderline with 3- \(\upmu \) m thin wire. We succeeded in observing clear signals for imaging from the four-channel CB-KIDs at 4 K by irradiating focused pulsed laser. A scanning laser spot can be achieved by an XYZ piezo-driven stage and an optical fiber with an aspheric focused lens. We can see typical signals from all 4 channels at 4 K, and obtain the positional dependence of the signal as the contour in XY plane. Our CB-KIDs can be used as neutron detectors by utilizing energy released from a nuclear reaction between \(^{10}\) B and cold neutron.  相似文献   

17.
An ozone (O \(_{3})\) oxidation process was introduced for Nb/Al-based superconducting tunnel junctions (STJs) in order to form defect-free tunnel barriers at high critical current and to improve the energy resolution ( \(\Delta E\) ) for X-rays. The dependence of critical current ( \(J_\mathrm{C})\) and leak current ( \(I_\mathrm{leak})\) on the O \(_{3}\) exposure was measured to optimize the oxidation condition. The 50-square- \(\upmu \) m STJs produced by the O \(_{3}\) oxidation process exhibited an extremely small \(I_\mathrm{leak}\) of less than 50 pA. As expected, the lower or shorter the O \(_{3}\) exposure, the higher \(J_\mathrm{C}\) and the smaller the normal resistance ( \(R_\mathrm{N})\) . However, the maximum \(J_\mathrm{C}\) was 8 A/cm \(^{2}\) at an O \(_{3}\) exposure of 0.72 Pa min, which is much smaller than those of STJs with the conventional O \(_{2}\) oxidation process. It is expected that the high \(J_\mathrm{C}\) of 1,000 A/cm \(^{2}\) , at which a 9-eV-energy resolution for 277 eV photons is predicted, can be reached by an O \(_{3}\) exposure of 3.5 \(\times \) 10 \(^{-4}\) Pa min.  相似文献   

18.
During the heating stage of the firing of a ceramic material, the mass \(m\) , length \(l\) , and diameter \(d\) of the sample alter their values depending on the temperature \(t\) . Young’s modulus \(E(f,m,l,d)\) measured by a sonic resonance method is also a function of the resonance frequency \(f\) . Therefore, three thermal analyses (TGA, TDA, modulated force TMA) must be performed to obtain correct values of Young’s modulus. The calculation of Young’s modulus can be simplified if TGA and/or TDA are omitted. This necessarily leads to partly incorrect results. If TGA is not performed, we have \(E[f(t),m_0 ,l(t),d(t)]\) and the relative difference \((\{E[f(t),m(t),l(t),d(t)]-E[f(t),m_0 ,l(t),d(t)]\}/E[f(t),m(t),l(t),d(t)])\) reaches 7 % for \(t> 650\,^\circ \text{ C}\) and less than 2 % for \(t< 500\,^\circ \text{ C}\) . If TDA is not performed, we have \(E[f(t),m(t),l_0 ,d_0 ]\) and the relative difference ( \(\{E[f(t),m(t),l(t),d(t)]-E[f(t),m(t),l_0 ,d_0 ]\}/E[f(t),m(t),l(t),d(t)])\) is less than 0.6 % for \(t < 1000\,^\circ \text{ C}\) . For the simplest case, we have \(E[f(t),m_0 ,l_0 ,d_0 ]\) and the relative difference ( \(\{E[f(t),m(t),l(t),d(t)]-E[f(t),m_0 ,l_0 ,d_0 ]\}/E[f(t),m(t),l(t),d(t)])\) is 7.5 % for \(t > 600\,^\circ \text{ C}\) and less than 2 % for \(t<500\,^\circ \text{ C}\) .  相似文献   

19.
Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate ( \(\mathrm{EPyBF}_{4})\) ] have been investigated by thermophysical properties. The apparent molar volume ( \(\phi _{V}\) ), viscosity \(B\) -coefficient, molal refraction ( \(R_{\mathrm{M}}\) ), and adiabatic compressibility ( \(\phi _{ K} )\) of glycine, l-alanine, and l-valine have been studied in 0.001 mol \({\cdot }\, \mathrm{dm}^{-3}\) , 0.003 mol \({\cdot }\, \mathrm{dm}^{-3}\) , and 0.005 mol  \({\cdot } \,\mathrm{dm}^{-3}\) aqueous 1-ethylpyridinium tetrafluoroborate [ \(\mathrm{EPyBF}_{4}\) ] solutions at 298.15 K from the values of densities \((\rho )\) , viscosities ( \(\eta \) ), refractive index ( \(n_{\mathrm{D}})\) , and speed of sound \((u)\) , respectively. The extent of interaction, i.e., the solute–solvent interaction is expressed in terms of the limiting apparent molar volume ( \(\phi _{V}^0 )\) , viscosity \(B\) -coefficient, and limiting apparent molar adiabatic compressibility ( \(\phi _{K}^0)\) . The limiting apparent molar volumes ( \(\phi _{V}^0 )\) , experimental slopes ( \(S_{V}^*)\) derived from the Masson equation, and viscosity \(A\) - and \(B\) -coefficients using the Jones–Dole equation have been interpreted in terms of ion–ion and ion–solvent interactions, respectively. Molal refractions ( \(R_{\mathrm{M}})\) have been calculated with the help of the Lorentz–Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute–solute and solute–solvent interactions to the solution complexes have also been analyzed through the derived properties.  相似文献   

20.
We have built and tested 32-element linear arrays of absorber-coupled transition-edge sensors (TESs) read out with a time-division SQUID multiplexer. This detector/readout architecture is designed for the background-limited far-IR/submm spectrograph (BLISS) which is a broadband (35–433  \(\upmu \) m), grating spectrometer consisting of six wavebands each with a modest resolution of R \(\sim \) 700. Since BLISS requires the effective noise equivalent power (NEP) of the TESs to equal 1  \(\times \)  10 \(^{-19}\)  W/Hz \(^{1/2}\) , our detectors consist of very long (1–2 mm), narrow (0.4 \(\upmu \) m), and thin (0.25 \(\upmu \) m) Si \(_{x}\) N \(_{y}\) support beams that reduce the thermal conductance G between the substrate and the optical absorber. The thermistors of our lowest noise TESs consist of iridium with \(T_{c}=130\) mK. We have measured the electrical properties of arrays of these Ir TESs with various meander and straight support beams and absorber shapes and found that G is \(\sim \) 30 fW/K (meander) and \(\sim \) 110 fW/K (straight), the electrical NEP is 2–3  \(\times \)  10 \(^{-19}\) W/Hz \(^{1/2}\) (meander and straight), and the response time \(\tau \) is 10–30 ms (meander) and 2–5 ms (straight). To reduce spurious or “dark” power from heating the arrays, we mounted the arrays into light-tight niobium boxes and added custom L/R and L/C low-pass chip filters into these boxes to intercept dark power from the bias and readout circuit. We found the average dark power equals 1.3 and 4.6 fW for the boxes with L/R and L/C chip filters, respectively. We have built arrays with \(T_{c}= 70\)  mK using molybdenum/copper bilayers and are working to lower the dark power by an order of magnitude so we can demonstrate NEP \(~=~1~\times \)  10 \(^{-19}\)  W/Hz \(^{1/2}\) with these arrays. PACS numbers: 85.25.Pb; 95.85.Gn; 95.85.Fm; 63.22. \(+\) m  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号