首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.
Reduction in the activity of the alpha-melanocyte-stimulating hormone (alpha-MSH) system causes obesity, and infusions of alpha-MSH can produce satiety, raising the possibility that alpha-MSH may mediate physiological satiety signals. Since alpha-MSH is coded for by the pro-opiomelanocortin (POMC) gene, we examined if POMC gene expression would be inhibited by fasting in normal mice or in models of obesity characterized by leptin insufficiency (ob/ob) or leptin insensitivity (db/db). In wild-type mice, hypothalamic POMC mRNA was decreased > 60% after a 2-day fast and was positively correlated with leptin mRNA. Similarly, compared with controls, POMC mRNA was decreased by at least 60% in both db/db and ob/ob mice. POMC mRNA was negatively correlated with both neuropeptide Y (NPY) and melanin-concentrating hormone (MCH) mRNA. Finally, treatment of both male and female ob/ob mice with leptin stimulated hypothalamic POMC mRNA by about threefold. These results suggest that impairment in production, processing, or responsiveness to alpha-MSH may be a common feature of obesity and that hypothalamic POMC neurons, stimulated by leptin, may constitute a link between leptin and the melanocortin system.  相似文献   

2.
Correction of the obese state induced by genetic leptin deficiency reduces elevated levels of both blood glucose and hypothalamic neuropeptide Y (NPY) mRNA in ob/ob mice. To determine whether these responses are due to a specific action of leptin or to the reversal of the obese state, we investigated the specificity of the effect of systemic leptin administration to ob/ob mice (n = 8) on levels of plasma glucose and insulin and on hypothalamic expression of NPY mRNA. Saline-treated controls were either fed ad libitum (n = 8) or pair-fed to the intake of the leptin-treated group (n = 8) to control for changes of food intake induced by leptin. The specificity of the effect of leptin was further assessed by 1) measuring NPY gene expression in db/db mice (n = 6) that are resistant to leptin, 2) measuring NPY gene expression in brain areas outside the hypothalamus, and 3) measuring the effect of leptin administration on hypothalamic expression of corticotropin-releasing hormone (CRH) mRNA. Five daily intraperitoneal injections of recombinant mouse leptin (150 micrograms) in ob/ob mice lowered food intake by 56% (P < 0.05), body weight by 4.1% (P < 0.05), and levels of NPY mRNA in the hypothalamic arcuate nucleus by 42.3% (P < 0.05) as compared with saline-treated controls. Pair-feeding of ob/ob mice to the intake of leptin-treated animals produced equivalent weight loss, but did not alter expression of NPY mRNA in the arcuate nucleus. Leptin administration was also without effect on food intake, body weight, or NPY mRNA levels in the arcuate nucleus of db/db mice. In ob/ob mice, leptin did not alter NPY mRNA levels in cerebral cortex or hippocampus or the expression of CRH mRNA in the hypothalamic paraventricular nucleus (PVN). Leptin administration to ob/ob mice also markedly reduced serum glucose (8.3 +/- 1.2 vs. 24.5 +/- 3.8 mmol/l; P < 0.01) and insulin levels (7,263 +/- 1,309 vs. 3,150 +/- 780 pmol/l), but was ineffective in db/db mice. Pair-fed mice experienced reductions of glucose and insulin levels that were < 60% of the reduction induced by leptin. The results suggest that in ob/ob mice, systemic administration of leptin inhibits NPY gene overexpression through a specific action in the arcuate nucleus and exerts a hypoglycemic action that is partly independent of its weight-reducing effects. Furthermore, both effects occur before reversal of the obesity syndrome. Defective leptin signaling due to either leptin deficiency (in ob/ob mice) or leptin resistance (in db/db mice) therefore leads directly to hyperglycemia and the overexpression of hypothalamic NPY that is implicated in the pathogenesis of the obesity syndrome.  相似文献   

3.
Among its many proposed functions, neuropeptide Y (NPY) is thought to modulate the hypothalamic-pituitary axis. Specifically, increased hypothalamic NPY signaling may be critical in mediating the neuroendocrine response to fasting. To determine the consequences of NPY deficiency on endocrine physiology, multiple hormones were quantitated in wildtype and NPY-knockout mice under fed and fasted conditions. Serum concentrations of leptin, corticosterone, thyroxine, and testosterone were normal in NPY-knockout males fed ad libitum. A 48-hour fast resulted in a 50% reduction in leptin, a 60% reduction in thyroxine, a 75% reduction in testosterone, and a 12-fold increase in corticosterone in both wildtype and NPY-knockout mice. Fasting also increased the estrous cycle length by 3 days in both wildtype and NPY-deficient female mice. We conclude that NPY is not essential for appropriate function of the gonadotropic, thyrotropic, or corticotropic axes under ad lib fed conditions or in response to acute fasting.  相似文献   

4.
Mutations in the obese (ob) gene lead to obesity. This gene has been recently cloned, but the factors regulating its expression have not been elucidated. To address the regulation of the ob gene with regard to body weight and nutritional factors, Northern blot analysis was used to assess ob mRNA in adipose tissue from mice [lean, obese due to diet, or genetically (yellow agouti) obese] under different nutritional conditions. ob mRNA was elevated in both forms of obesity, compared to lean controls, correlated with elevations in plasma insulin and body weight, but not plasma glucose. In lean C57BL/6J mice, but not in mice with diet-induced obesity, ob mRNA decreased after a 48-hr fast. Similarly, in lean C57BL/6J controls, but not in obese yellow mice, i.p. glucose injection significantly increased ob mRNA. For up to 30 min after glucose injection, ob mRNA in lean mice significantly correlated with plasma glucose, but not with plasma insulin. In a separate study with only lean mice, ob mRNA was inhibited >90% by fasting, and elevated approximately 2-fold 30 min after i.p. injection of either glucose or insulin. These results suggest that in lean animals glucose and insulin enhance ob gene expression. In contrast to our results in lean mice, in obese animals ob mRNA is elevated and relatively insensitive to nutritional state, possibly due to chronic exposure to elevated plasma insulin and/or glucose.  相似文献   

5.
Genetic obesity is associated with increased neuropeptide Y (NPY) messenger RNA (mRNA) and decreased POMC mRNA in the hypothalamus of ob/ob and db/db mice, or impaired sensitivity to alphaMSH (derived from POMC) in the yellow agouti mouse. Acquired obesity can be produced by chemically lesioning the hypothalamus with either monosodium glutamate (MSG) in neonates or gold thioglucose (GTG) in adult mice. The present study examined whether elevated NPY mRNA and/or decreased POMC mRNA in the hypothalamus are associated with obesity due to hypothalamic lesions. GTG injection into adult mice produced a profound obese phenotype, including hyperphagia, increased body weight, and increased leptin mRNA and peptide, in association with reduced hypothalamic NPY mRNA and POMC mRNA. MSG treatment produced virtual elimination of NPY mRNA in the arcuate nucleus and a reduction of hypothalamic POMC mRNA, and led to elevated leptin. MSG pretreatment did not attenuate GTG-induced hyperphagia and obese phenotype. These results do not support a role for NPY-synthesizing neurons in the arcuate nucleus in mediating hypothalamic acquired obesity, but are consistent with the hypothesis that decreased activity of hypothalamic neurons synthesizing POMC play a role in mediating hypothalamic obesity.  相似文献   

6.
Obesity is associated with diabetes, and leptin is known to be elevated in obesity. To investigate whether leptin has a direct effect on insulin secretion, isolated rat and human islets and cultured insulinoma cells were studied. In all cases, mouse leptin inhibited insulin secretion at concentrations within the plasma range reported in humans. Insulin mRNA expression was also suppressed in the cultured cells and rat islets. The long form of the leptin receptor (OB-Rb) mRNA was present in the islets and insulinoma cell lines. To determine the significance of these findings in vivo, normal fed mice were injected with two doses of leptin. A significant decrease in plasma insulin and associated rise in glucose concentration were observed. Fasted normal and leptin receptor-deficient db/db mice showed no response to leptin. A dose of leptin, which mimicked that found in normal mice, was administered to leptin-deficient, hyperinsulinemic ob/ob mice. This caused a marked lowering of plasma insulin concentration and a doubling of plasma glucose. Thus, leptin has a powerful acute inhibitory effect on insulin secretion. These results suggest that the action of leptin may be one mechanism by which excess adipose tissue could acutely impair carbohydrate metabolism.  相似文献   

7.
8.
Cytokines and insulin-like growth factors (IGFs) are involved in the induction and/or perpetuation of inflammatory bowel disease. The effect of fasting on inflammatory bowel disease was studied in a mouse experimental model of acute colitis caused by adding dextran sulfate sodium (DSS) to drinking water. Animals were either fed ad libitum or fasted (water only) for 2 days before death. Inflammation and tissue damage, measured as a colitis activity score, were markedly reduced in fasted (2.4 +/- 0.1) compared to fed (5.3 +/- 0.1) DSS animals (P < 0.0001). Colon interleukin-1 beta (IL-1 beta), IGF-I, and tumor necrosis factor-alpha messenger RNAs (mRNAs) were quantified by Northern blot hybridization and expressed as a percentage of mRNA abundance in fed controls. In DSS mice, IL-1 beta mRNA was elevated in the fed group (954 +/- 155%; P < 0.001), but was suppressed in fasted animals (71.1 +/- 11%). IGF-I mRNA also was elevated in fed DSS mice (421 +/- 71%; P < 0.01). This increase was attenuated in fasted DSS mice (202 +/- 17%; P < 0.01 compared to fed DSS mice). Tumor necrosis factor-alpha mRNA was increased in fed DSS mice (162 +/- 15%; P < 0.01), but was not significantly lower in fasted animals. By in situ hybridization, IL-1 beta mRNA was localized to the lamina propria of colonic mucosa in fed DSS animals, but was not detectable in other groups. We conclude that fasting has a protective effect on the progression of acute DSS, induced colitis. This is associated with decreased expression of IL-1 beta and IGF-I mRNAs in the colon.  相似文献   

9.
Fasting stimulates corticosterone (B) secretion and the expression and secretion of hypothalamic neuropeptide Y in rats. These studies tested the hypothesis that the rapid and marked fasting-induced increases in plasma B are responsible for stimulation of neuropeptide Y (NPY) gene expression. Plasma leptin and insulin were measured because they are also signals known to affect NPY messenger RNA (mRNA). Intact or adrenalectomized rats given a low fixed level of corticosterone (B replaced) were fasted for 48 h. NPY mRNA in the mediobasal hypothalamus, measured by nuclease protection assay, was elevated similarly above ad lib-fed controls in both intact and B replaced groups at 15 and 48 h after the onset of fasting. NPY immunoreactivity in the mediobasal hypothalamus increased between 3 and 48 h after onset of the fast in intact but not in B replaced groups. The fasting-induced decreases in leptin observed in intact rats at 48 h did not occur in B replaced rats. Fasting-induced decreases in insulin occurred in B replaced rats but not in intact rats. We conclude that: 1) elevated B is not required for fasting-induced increases in hypothalamic NPY gene expression; and 2) decreases in neither leptin nor insulin alone signal the changes that occur in NPY mRNA in fasted rats.  相似文献   

10.
The ob gene product, leptin, causes significant and dose-dependent inhibition of basal and insulin-stimulated glycogen synthesis in isolated soleus muscle from ob/ob mice, and a smaller, non-significant inhibition in muscle from wild-type mice. Leptin had no inhibitory effect on glycogen synthesis in soleus muscle from the diabetic (db/db) mice, which lack the functional leptin receptor. The full-length leptin receptor (Ob-Rb), is expressed in soleus muscle of both ob/ob and wild-type mice, however with no detectable differences in expression level. These results suggest that hyperleptinaemia may attenuate insulin action on glucose storage in skeletal muscle.  相似文献   

11.
The obese gene (OB) product, leptin, has been shown to exert control on metabolic processes such as food intake and body weight homeostasis, possibly through a neuropeptide Y (NPY) neurotransmission. More recently, leptin has been shown to control several neuroendocrine axes, modulating pituitary hormone secretions in function of metabolic conditions. Since in the rat growth hormone (GH) secretion is dependent upon prevailing metabolic conditions, and NPY has been shown to be implicated in the feedback mechanisms of this hormone, we reasoned that leptin could also exert control over GH secretion and we examined this hypothesis in male rats submitted to a 3-day fast. Circulating leptin concentrations measured by RIA abruptly fell to low values after 24 h of fasting and remained low thereafter. Upon refeeding, leptin secretion regularly increased. As shown by others, pulsatile GH secretion had disappeared after 3 days of fasting. Centrally administered leptin (10 microg/day, i.c.v. infusion initiated at the beginning of the fasting period) totally prevented the disappearance of pulsatile GH secretion. No leak of centrally administered leptin to the general circulation was observed. Infusing the same amount of leptin intracerebroventricularly to rats receiving ad libitum feeding produced a severe reduction in food intake but maintained a normal GH secretory pattern. In contrast, pair-fed rats, submitted to the same food restriction, exhibited a marked reduction in GH secretion. Hypothalamic NPY gene expression, estimated by Northern blot analysis, was significantly increased in fasting rats, and decreased in leptin-treated, fasting rats. In rats receiving ad libitum feeding, leptin treatment reduced NPY gene expression, consistent with the observed reduction in food intake, whereas pair-fed animals logically exhibited increased NPY gene expression. In both situations with reduced feeding, normal GH secretion was seen in leptin-treated animals exhibiting low NPY gene expression, whereas decreased or abolished GH secretion was seen in animals not receiving leptin and exhibiting increased NPY mRNA levels. Interestingly, despite maintenance of normal GH secretion in leptin-treated, fasting rats, plasma IGF-I levels were low, as in vehicle-treated rats. Indeed, hepatic gene expression for both GH receptor and IGF-I was markedly reduced by fasting, and no correction was seen with leptin treatment. In summary, the regulation of GH secretion, at least the changes linked with malnutrition, appears to be dependent upon a leptin signal, perceived centrally, possibly related to circulating levels of this new hormone. The present data suggest that leptin can rescue normal pulsatile GH secretion by preventing the documented inhibitory action of NPY on GH secretion.  相似文献   

12.
Alpha-methyl-p-tyrosine (alphaMPT), an inhibitor of tyrosine hydroxylase, was administered to mice to block noradrenaline synthesis. Ten hours after injection of alphaMPT there was a 6-fold increase in plasma leptin. The level of ob mRNA in epididymal white adipose tissue was also increased, but UCP1 mRNA in brown fat fell. In contrast to lean mice, ob mRNA in white fat of ob/ob mice was not increased by alphaMPT. AlphaMPT raised plasma leptin in fasted as well as fed mice. Hyperleptinaemia was attenuated by treatment with a beta3-adrenoceptor agonist. Inhibition of noradrenaline synthesis leads to the rapid induction of hyperleptinaemia; it is suggested that sympathetic tone plays a pivotal role in regulating leptin production.  相似文献   

13.
Deposition of excess body fat occurs when energy intake chronically exceeds energy expenditure. In ob/ob mice, the absence of leptin affects both components of the energy balance equation, and the mice become morbidly obese after weaning. Treatment of ob/ob mice with exogenous leptin reduces body weight by decreasing food intake and stimulating energy utilization, but even when saline- and leptin-injected ob/ob mice are pair-fed, mice receiving leptin lose significantly more weight. Therefore, the purpose of the present study was to test the hypotheses that uncoupling protein-1 (UCP1) expression is reduced in adipose tissue from ob/ob mice and is restored by treatment with exogenous leptin. Lean and ob/ob mice (5-6 weeks old) were housed at 23 C and treated with leptin (20 microg/g BW x day) for 3 days before they were killed. Compared with levels in lean littermates, UCP1 messenger RNA (mRNA) and protein levels were lower in brown adipose tissue (BAT) and retroperitoneal white adipose tissue (WAT) from ob/ob mice. Treatment of ob/ob mice with leptin reduced body weight and produced a 4- to 5-fold increase in UCP1 mRNA levels in both interscapular BAT and retroperitoneal WAT. The increases in UCP1 mRNA were accompanied by comparable increases in UCP1 protein in mitochondrial preparations from each tissue. Given that the sole known function of UCP1 is to uncouple oxidative phosphorylation, the present results are consistent with the conclusion that leptin stimulates energy utilization in ob/ob mice by increasing thermogenic activity and capacity (UCP1). In addition, the present results suggest that decreased UCP1 expression in BAT and WAT of ob/ob mice is in part responsible for their increased metabolic efficiency and propensity to become obese.  相似文献   

14.
15.
The effects of leptin on the levels of CRF messenger RNA (mRNA) in the paraventricular hypothalamic nucleus (PVN), on the activation of the PVN CRF cells, and on the plasma levels of corticosterone were investigated in lean (+/?) and obese (ob/ob) C57BL/6J male mice. Murine leptin was s.c. infused using osmotic minipumps. The treatment period extended to 7 days, and the daily dose of leptin delivered was 100 microg/kg. The mice were killed either in a fed state or following 24 h of total food deprivation. The starvation paradigm was employed to enhance the activity of the hypothalamic-pituitary-adrenal axis in obese mice. In situ hybridization histochemistry was performed to determine the PVN levels of CRF mRNA and the arcuate nucleus levels of neuropeptide Y mRNA. The activity of the PVN CRF cells was estimated from the number of PVN cells colocalizing CRF mRNA and the protein Fos. Leptin led to a reduction in body weight gain and fat deposition. These effects were seen in both +/? and ob/ob mice and were observed to be particularly striking in obese mutants, in which leptin also caused an important reduction in food intake. Leptin also was found to affect plasma levels of corticosterone. It lowered the high corticosterone levels of obese mutants, an effect that appeared more evident in food-deprived than in fed mice. Finally, leptin prevented the induction of CRF synthesis in the PVN and the activation of the PVN CRF neurons observed in food-deprived ob/ob mice and hindered the elevation of arcuate nucleus neuropeptide Y synthesis in ob/ob mice. Together these results suggest a role for leptin in the excessive response of the hypophysiotropic CRF system of the ob/ob mouse.  相似文献   

16.
TNF-alpha may play a role in mediating insulin resistance associated with obesity. This concept is based on studies of obese rodents and humans, and cell culture models. TNF elicits cellular responses via two receptors called p55 and p75. Our purpose was to test the involvement of TNF in glucose homeostasis using mice lacking one or both TNF receptors. C57BL/6 mice lacking p55 (p55(-)/-), p75, (p75(-)/-), or both receptors (p55(-)/-p75(-)/-) were fed a high-fat diet to induce obesity. Marked fasting hyperinsulinemia was seen for p55(-)/-p75(-)/- males between 12 and 16 wk of feeding the high-fat diet. Insulin levels were four times greater than wild-type mice. In contrast, p55(-)/- and p75(-)/- mice exhibited insulin levels that were similar or reduced, respectively, as compared with wild-type mice. In addition, high-fat diet-fed p75(-)/- mice had the lowest body weights and leptin levels, and improved insulin sensitivity. Obese (db/db) mice, which are not responsive to leptin, were used to study the role of p55 in severe obesity. Male p55(-)/-db/db mice exhibited threefold higher insulin levels and twofold lower glucose levels at 20 wk of age than control db/db expressing p55. All db/db mice remained severely insulin resistant based on fasting plasma glucose and insulin levels, and glucose and insulin tolerance tests. Our data do not support the concept that TNF, acting via its receptors, is a major contributor to obesity-associated insulin resistance. In fact, data suggest that the two TNF receptors work in concert to protect against diabetes.  相似文献   

17.
Leptin, the protein product of the adipose tissue-specific ob (obese) gene (1), reduces the body weight, adiposity and food intake of obese ob/ob mice on peripheral or central injection (2, 3, 4). [125I]leptin binding has been detected in mouse choroid plexus (5), from which a leptin receptor gene was expression cloned (5). The gene has at least 6 splice variants (6, 7). Leptin receptor mRNA was localized in the hypothalamus by in situ hybridization being particularly abundantly expressed in the arcuate nucleus (8). There is evidence linking the physiological effects of injected leptin with hypothalamic neuropeptide Y (9, 10) (NPY), which has potent central effects on food intake and energy balance (11), and is also expressed in the arcuate nucleus. Here we report dual in situ hybridization studies for leptin receptor and NPY gene expression in the mouse arcuate nucleus, where the majority of cells examined expressed both genes. This provides the first direct evidence that leptin acts on cells that express NPY mRNA.  相似文献   

18.
The present study has examined the effects of the adipocyte-derived hormone, leptin, on lipolysis in fat cells of different types of mice. Exposure to leptin (1.25.10(-6) M to 1.25.10(-12) M) increased (P < 0.01) the lipolytic activity of fat cells obtained from lean mice. A greater stimulation was observed when adipocytes from ob/ob mice were examined. Throughout the concentrations tested, the leptin-induced lipolysis observed in fat cells of lean animals was smaller than that obtained in ob/ob mice. The maximal lipolytic effect in obese animals was observed with 10(-8) M of OB protein. The lipolytic activity following the addition of 1.25.10(-10) M to 1.25.10(-6) M was significantly increased (P < 0.01) in ob/ob mice compared to lean animals. Adipocytes from ob/ob mice responded in a dose-dependent manner to the OB protein, while the leptin-induced lipolysis observed in lean animals was dose-independent. In contrast to lean and ob/ob mice, leptin did not stimulate lipolysis in adipocytes from db/db mice, which have a mutation in the leptin receptor gene. These in vitro studies suggest an autocrine/paracrine action of leptin on white fat cells and envisages the involvement of the OB protein, not only in centrally mediated pathways, but also in physiological functions which take place peripherally.  相似文献   

19.
20.
Hypoglycemia causes hyperphagia and weight gain, through unknown peripheral and central signals. We investigated the effect of hypoglycemia on NPY and leptin expression and the ability of leptin to inhibit hypoglycemia-induced hyperphagia. Acute hypoglycemia (60 U/kg SC insulin; n = 8) increased food intake (p < 0.01) compared with controls (n = 8). Insulin- and leptin-treated rats (300 microg/kg IP leptin; n = 8) had reduced hyperphagia (p < 0.05 vs. controls; p < 0.05 vs. insulin alone) and a 15% fall in NPY mRNA levels compared with controls (p < 0.01). Chronic hypoglycemia, (20-60 U/kg/day insulin; n = 8) increased food intake compared with vehicle-treated controls (p < 0.01). Leptin and insulin administration (300 microg/kg/day IP leptin; n = 8) reduced hyperphagia (p < 0.01 vs. controls, p < 0.05 vs. insulin alone), and NPY mRNA fell by 18% vs. controls (p < 0.01). We conclude that hypoglycemia-induced hyperphagia is not mediated by either a fall in leptin or an increase in hypothalamic NPY mRNA. Leptin can inhibit feeding in hyperphagic hypoglycemic rats, and this may partly be attributable to its inhibition of the NPY neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号