首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stimulation of [35S]GTPgammaS binding by serotonin (5-hydroxytryptamine, 5-HT) receptor ligands was characterized in rat hippocampal membranes. The optimized assay contained 30-50 microg protein, 300 microM GDP and 0.1 nM [35S]GTPgammaS, incubated at 37 degrees C for 20 min. At 10 microM, the 5-HT1A receptor agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin [R(+)-8-OH-DPAT] stimulated GTPgammaS binding from 27.1 +/- 2.5 to 45.7 +/- 4.2 fmol/mg protein. Increasing the protein concentration did not affect the absolute difference between basal and maximal GTPgammaS binding nor the EC50, but decreased the percent stimulation. The non-selective agonists serotonin and 5-carboxamidotryptamine were 30-35% more efficacious, whereas the partial agonists buspirone and S(-)-8-hydroxy-2-(di-n-propylamino)tetralin stimulated GTPgammaS binding by 19 +/- 1 and 43 +/- 3%, respectively, compared to R(+)-8-OH-DPAT. Neither the 5-HT2 receptor agonist [(+/-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl] (DOI) nor the 5-HT1A receptor antagonists WAY 100,635 (n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride) and spiperone altered basal GTPgammaS binding. WAY 100,635 abolished the effect of R(+)-8-OH-DPAT, but only reduced the effect of serotonin by 88 +/- 3%. Finally, methiothepin antagonized R(+)-8-OH-DPAT-stimulated GTPgammaS binding and reduced basal GTPgammaS binding by itself. The reduction was not affected by WAY 100,635. We have characterized a method to assess functional activity at 5-HT1A receptors in rat hippocampal membranes by measuring agonist-induced [35S]GTPgammaS binding.  相似文献   

2.
G-protein activation by different 5-HT receptor ligands was investigated in h5-HT1A receptor-transfected C6-glial and HeLa cells using agonist-stimulated [35S]-GTP gamma S binding to membranes in the presence of excess GDP. 5-HT (10 microM) stimulated [35S]GTP gamma S binding in the C6-glial membrane preparation to a larger extent than in the HeLa preparation; maximal responses with 30 microM GDP were 490 +/- 99 and 68 +/- 12%, respectively. With the 5-HT receptor agonists that were being investigated, the two preparations displayed the same rank order of potency for stimulation of [35S]GTP gamma S binding. In the C6-glial preparation at 0.3 microM GDP, the rank order of maximal effects was: 5-HT (1.00) > 8-OH-DPAT (0.90) = R(+)-8-OH-DPAT (0.87) = 5-CT (0.86) = L694247 (0.84) > S(-)8-OH-DPAT (0.68) = buspirone (0.67) = spiroxatrine (0.67) = flesinoxan (0.64) > ipsapirone (0.53) = (-)-pindolol (0.50) > SDZ216525 (0.25). However, differences in maximal response in the C6-glial preparation were magnified by increasing the GDP concentrations, indicating that the activity state of G-proteins can affect the maximal response. With the exception of 5-CT and L694247, increasing the amount of GDP to 30 microM and higher concentrations resulted in an attenuation of both the ligand's maximal effect (24 to 56%) and apparent potency (6 to 24-fold). Each of the [35S]GTP gamma S binding responses was mediated by a 5-HT1A receptor as indicated by the competitive blockade by WAY100635 and spiperone. Only 5-CT and L694247 in some conditions displayed an efficacy similar to that of 5-HT at the h5-HT1A receptor; the other agents with intrinsic activity are partial agonists at this receptor. The data also suggest that the activity state of the G-proteins is involved in the maximal effects that can be produced by activating the h5-HT1A receptor.  相似文献   

3.
Endomorphin-1 is a peptide whose binding selectivity suggests a role as an endogenous ligand at mu-opioid receptors. In the present study, the effect of endomorphin-1 on mu receptor-coupled G proteins was compared with that of the mu agonist DAMGO by using agonist-stimulated [35S]GTPgammaS binding in rat brain. [35S]GTPgammaS autoradiography revealed a similar localization of endomorphin-1- and DAMGO-stimulated [35S]GTPgammaS binding in areas including thalamus, caudate-putamen, amygdala, periaqueductal gray, parabrachial nucleus, and nucleus tractus solitarius. Naloxone blocked endomorphin-1-stimulated labeling in all regions examined. Although the distribution of endomorphin-1-stimulated [35S]GTPgammaS binding resembled that of DAMGO, the magnitude of endomorphin-1-stimulated binding was significantly lower than that produced by DAMGO. Concentration-effect curves of endomorphin-1 and DAMGO in thalamic membranes confirmed that endomorphin-1 produced only 70% of DAMGO-stimulated [35S]GTPgammaS binding. Differences in maximal stimulation of [35S]GTPgammaS binding between DAMGO and endomorphin-1 were magnified by increasing GDP concentrations, and saturation analysis of net endomorphin-1-stimulated [35S]GTPgammaS binding revealed a lower apparent Bmax value than that obtained with DAMGO. Endomorphin-1 also partially antagonized DAMGO stimulation of [35S]GTPgammaS binding. These results demonstrate that endomorphin-1 is a partial agonist for G protein activation at the mu-opioid receptor in brain.  相似文献   

4.
Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists.  相似文献   

5.
Determination of the optimal assay conditions for the specific binding of a tritiated derivative of the novel potential anxiolytic drug alnespirone (S-20499, (+)-4-[N-(5-methoxy-chroman-3-yl)-N-propylamino]butyl-8-azaspiro-( 4,5)-decane-7,9-dione) allowed the demonstration that this radioligand bound with a high affinity (Kd = 0.36 nM) to a homogeneous class of sites in rat hippocampal membranes. The pharmacological properties of [3H]alnespirone specific binding sites matched exactly (r = 0.95) those of 5-HT1A receptors identified with [3H]8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) as radioligand. Furthermore, membrane binding experiments and autoradiographic labeling of tissue sections showed that the regional distribution of [3H]alnespirone specific binding sites in the rat brain and spinal cord superimposed over that of 5-HT1A receptors specifically labeled by [3H]8-OH-DPAT. However, the differential sensitivity of [3H]alnespirone and [3H]8-OH-DPAT specific binding to various physicochemical effectors (temperature, pH, Mn2+, N-ethyl-maleimide) supports the idea that these two agonist radioligands did not recognize 5-HT1A receptors exactly in the same way. These differences probably account for the reported inability of alnespirone, in contrast to 8-OH-DPAT, to induce some 5-HT1A receptor-mediated behavioural effects in rats.  相似文献   

6.
The tritiated derivative of the potent 5-HT1A receptor agonist S-14506 ?1[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphtyl)pipera zine? was tested for its capacity to selectively label the serotonin 5-HT1A receptors both in vitro in the rat and the mouse brain, and in vivo in the mouse. In vitro studies showed that the pharmacological profile and the distribution of [3H]S-14506 specific binding sites (Kd = 0.15 nM) in different brain regions matched perfectly those of the prototypical 5-HT1A receptor ligand [3H]8-OH-DPAT. However, in the three regions examined (hippocampus, septum, cerebral cortex), the density of [3H]S-14506 specific binding sites was significantly higher (+66-90%) than that found with [3H]8-OH-DPAT. Whereas the specific binding of [3H]8-OH-DPAT was markedly reduced by GTP and Gpp(NH)p and increased by Mn2+, that of [3H]S-14506 was essentially unaffected by these compounds. In addition, the alkylating agent N-ethylmaleimide was much less potent to inhibit the specific binding of [3H]S-14506 than that of [3H]8-OH-DPAT. Measurement of in vivo accumulation of tritium one hour after i.v. injection of [3H]S-14506 to mice revealed marked regional differences, with about 2.5 times more radioactivity in the hippocampus than in the cerebellum. Pretreatment with 5-HT1A receptor ligands prevented tritium accumulation in the hippocampus but not in the cerebellum. Autoradiograms from brain sections of injected mice confirmed the specific in vivo labeling of 5-HT1A receptors by [3H]S-14506, therefore suggesting further developments with derivatives of this molecule for positron emission tomography in vivo in man.  相似文献   

7.
Alpha-2 adrenergic receptors (alpha2 AR) mediate incorporation of guanosine 5'-O-(gamma-thio)triphosphate ([35S]GTPgammaS) into isolated membranes via receptor-catalyzed exchange of [35S]GTPgammaS for GDP. In the current study, we used [35S]GTPgammaS incorporation to characterize the intrinsic activity and potency of agonists and antagonists at the cloned mouse alpha2a/d and human alpha2a, alpha2b, and alpha2c ARs. Full agonists increased [35S]GTPgammaS binding to membranes by 2- to 3-fold. Antagonists did not increase [35S]GTPgammaS binding but competitively inhibited agonist-stimulated [35S]GTPgammaS binding. Compounds with intrinsic activities less than that of the full agonists norepinephrine (NE) or epinephrine (EPI) were capable of antagonizing agonist-stimulated [35S]GTPgammaS binding. The agonistic properties of a number of alpha2 AR ligands were characterized at each alpha2 AR subtype. The rank order of agonist potency for selected compounds at the human receptors (with intrinsic activity compared with NE, defined as 1.0) was: alpha2a: Dexmedetomidine (0.73) > guanabenz (0.38) > UK-14304 (1.02) > clonidine (0.32) > ST-91 (0.63) > NE (1.00). alpha2b: Dexmedetomidine (1.10) > clonidine (0.18) > guanabenz (0.71) > NE (1.00) > ST-91 (0.44) > UK-14304 (0.59). alpha2c: Dexmedetomidine (1.03) > NE (1.00) > UK-14304 (0.75) > ST-91 (0.32) > or = clonidine (0.23) > guanabenz (0). This report provides a functional characterization of adrenergic receptor ligands at human and mouse alpha2a/d AR. It also illustrates the utility of [35S]GTPgammaS incorporation as a functional marker of receptor activation.  相似文献   

8.
The effects of adenosine receptor ligands and three novel pyrazolopyridine derivatives on guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding to rat cerebral cortical membranes were examined. [35S]GTPgammaS binding was stimulated in a concentration dependent manner by several adenosine receptor agonists. The adenosine A2a receptor selective agonist, 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680), was ineffective confirming specificity for adenosine A1 receptor activation. 2-Chloro-N6-cyclopentyladenosine (CCPA; 10(-7) M)-stimulated [35S]GTPgammaS binding was inhibited by xanthine and pyrazolopyridine based adenosine receptor antagonists. The concentration-response curve for CCPA-stimulated [35S]GTPgammaS binding was shifted to the right with increasing concentrations of antagonist without significant changes in maximal response. Schild analyses determined pK(B) values of 8.97, 8.88, 8.21, 8.16, 7.79 and 7.65 for 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (R)-1-[(E)-3-(2-phenylpyrazolo[1,5a]pyridin-3-yl) acryloyl]-2-piperidine ethanol (FK453), 6-oxo-3-(2-phenylpyrazolo[1,5a]pyridin-3-yl)-1(6H)-pyridazinebutyric+ ++ acid (FK838), 9-chloro-2-(2-furyl)[1,2,4]triazolo-[1,5c]quinazolin-5-amine (CGS 15943), 8-cyclopentyl-1,3-methylxanthine (CPT) and (R)-1-[(E)-3-(2-phenylpyrazolo[1,5a]pyridin-3-yl) acryloyl]-piperidin-2-yl acetic acid (FK352), respectively. Schild slopes were close to unity, confirming that these novel pyrazolopyridine derivatives act as competitive antagonists at rat brain adenosine A1 receptors.  相似文献   

9.
Recent cloning and expression studies have revealed that the opioid mu-, delta-, kappa- and orphan receptors are seven-transmembrane domain receptors whose actions are mediated through activation of guanine nucleotide binding protein (G-protein). The activation of G-proteins by the opioid receptor can be measured by assessing agonist stimulation of membrane binding of the non-hydrolyzable analog of guanosine triphosphate (GTP), guanosine-5'-O-(3-[35S] thio) triphosphate ([35S] GTP gamma S). Our recent data suggest that 1) the level of spinal mu-, delta-, kappa- and orphan-receptor agonist-stimulated [35S] GTP gamma S binding closely parallels that of receptor binding densities, 2) the neuroanatomical distribution of opioid agonist-stimulated [35S] GTP gamma S binding relates to receptor binding distribution, 3) newly isolated opioid peptides, endomorphin-1 and -2, can activate G-proteins by specific stimulation of mu-receptors and act as partial agonists with moderate catalytic efficacies, 4) mu-receptor densities could be rate-limiting steps in the G-protein activation by mu-agonists in the spinal cord region. In conclusion, opioid agonist-stimulated [35S] GTP gamma S binding can provide a functional method to localize receptors not only by their ability to bind ligands, but also according to their ability to activate an intracellular signal transducer.  相似文献   

10.
Receptor antagonists can be classified as neutral antagonists or antagonists with inverse agonist activity based on their effectiveness to reduce the spontaneous agonist-independent activity of receptors. The goals of this study were to (1) demonstrate that A1-adenosine receptors (A1AdoRs) expressed at high density (4000-8000 fmol/mg of protein) in Chinese hamster ovary (CHO) cells cause constitutive activation of inhibitory G proteins and inhibition of adenylyl cyclase activity and (2) identify both neutral A1AdoR antagonists and antagonists with inverse agonist activity. The activity of A1AdoR agonists and antagonists was determined by assays of both specific binding of [35S]guanosine-5'-O-(3-thio)triphosphate ([35S]GTPgammaS) to membranes and cAMP content of intact cells in the presence of adenosine deaminase (2-5 units/ml). The A1AdoR agonist N6-cyclopentyladenosine (CPA) significantly increased binding of [35S]GTPgammaS by 241 +/- 7% compared with control. The A1AdoR antagonists N-0861, N-0840, and WRC-0342 did not alter binding of [35S]GTPgammaS, whereas the antagonists 8-cyclopentyl-1, 3-dipropylxanthine (CPX), CGS-15943, xanthine amine congener, and WRC-0571 significantly reduced binding of [35S]GTPgammaS by 28-53% from control, respectively. The effects of both the agonist N6-cyclopentyladenosine (CPA) and the antagonist CPX to alter binding of [35S]GTPgammaS were attenuated by 1 micro M N-0861. CPA reduced cAMP content of forskolin-stimulated CHO:A1AdoR cells, and N-0861 and WRC-0342 did not alter cAMP content, but the antagonists CPX and WRC-0571 increased the cAMP content of CHO:A1AdoR cells. The effects of both CPX and WRC-0571 to increase cAMP content of forskolin-stimulated CHO:A1AdoR cells were attenuated by either N-0861 or WRC-0342. The results indicate that both N-0861 and WRC-0342 are neutral antagonists, whereas both CPX and WRC-0571 are antagonists with inverse agonist activity.  相似文献   

11.
Activation of kappa receptors inhibits adenylate cyclase, enhances K+ conductance and reduces Ca++ conductance via pertussis toxin-sensitive G proteins. We recently cloned a human kappa opioid receptor and stably expressed it in Chinese hamster ovary (CHO) cells. In this study, the effects of activation of the human kappa receptor by agonists on [35S]GTPgammaS binding to CHO cell membranes were examined. The presence of GDP and Mg++ was essential for the kappa agonist (-)-U50,488H-induced increase in [35S]GTPgammaS binding to be observed and the optimal concentration was 3 microM and 5 mM, respectively. The presence of 100 mM Na+ was necessary to produce the maximal signal-to-background ratio. (-)U50,488H-induced increase in [35S]GTPgammaS binding was time- and tissue concentration-dependent. (-)U50,488H increased [35S]GTPgammaS binding in a dose-dependent manner with an EC50 of 3.1 nM. (+)-U50,488H had no effect, which indicates that this effect is stereospecific. Naloxone (1 microM) or norbinaltorphimine (10 nM) shifted the dose-response curve of (-)-U50,488H to the right by 100-fold. These results indicate that enhancement of [35S]GTPgammaS binding by (-)-U50,488H is a kappa receptor-mediated event. Pretreatment of the cells with pertussis toxin, but not cholera toxin, abolished the (-)-U50,488H-induced increase in [35S]GTPgammaS binding, which indicates the involvement of Gi and/or Go proteins. [35S]GTPgammaS binding induced by (-)-U50,488H had a Kd value of 0.34 +/- 0.08 nM and a Bmax value of 431 +/- 29 fmol/mg protein. The rank order of potencies of opioid ligands tested in stimulating [35S]GTPgammaS binding was dynorphin A 1-17 > (+/-)-ethylketocyclazocine > beta-funaltrexamine, (-)-U50,488H, tifluadom > nalorphine > pentazocine, nalbuphine > buprenorphine. Dynorphin A 1-17, (+/-)-ethylketocyclazocine, (-)-U50,488H, tifluadom and beta-funaltrexamine were full agonists, but nalorphine and pentazocine were partial agonists producing maximal responses of 68% and 23% of those of full agonists, respectively. Nalbuphine and buprenorphine had low levels of agonist activities. Norbinaltorphimine and naloxone were antagonists devoid of activities. Enhancement of [35S]GTPgammaS binding by kappa agonists provides a simple functional measure for receptor activation and can be used for determination of potencies and efficacies of opioid ligands at the kappa receptor.  相似文献   

12.
The relationship between GDP and cannabinoid-stimulated [35S]guanosine-5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) binding was investigated in rat cerebellar membranes. Kinetic analyses showed that [35S]GTPgammaS binding reached steady-state levels and that the association rate was increased by the agonist WIN 55212-2 proportional to the concentration of GDP. Dissociation of [35S]GTPgammaS occurred with two rates (t1/2 = 7 and 170 min), and WIN 55212-2 increased the proportion of sites exhibiting the faster rate. Without GDP, [35S]GTPgammaS bound to membranes with high and low affinity, and WIN 55212-2 had no effect. With 30 microM GDP, [35S]GTPgammaS bound to low and intermediate affinity sites, and WIN 55212-2 induced high affinity [35S]GTPgammaS binding without affecting low affinity sites. GDP competed for high affinity [35S]GTPgammaS binding with high and intermediate affinity in the absence of WIN 55212-2 and with high and low affinity in the presence of WIN 55212-2. Cannabinoid ligands displayed differential abilities to maximally stimulate [35S]GTPgammaS binding in the presence of GDP. Efficacy differences among ligands increased with increasing GDP concentrations. GDP competition curves revealed that agonists induced low affinity GDP Ki values that were proportional to agonist Emax values, indicating that agonist efficacy is determined by displacement of GDP from G-proteins.  相似文献   

13.
The actions of several serotonergic ligands in use or under development for the treatment of migraine headaches were examined at recombinant human 5-HT1A receptors stably expressed in Chinese Hamster Ovary cells. Affinities (K(i)s) at this site were determined in competition binding experiments with [3H]-8-OH-DPAT ([3H](+/-)8-hydroxy-N,N-dipropylaminotetralin), whilst agonist efficacy was measured by stimulation of [35S]-GTP gamma S (guanylyl-5'-[gamma[35S]thio]-triphosphate) binding. Of the prophylactic antimigraine drugs tested, methysergide and lisuride behaved as efficacious agonists (Emax > or = 90% relative to 5-HT) whereas pitozifen and (-)propranolol acted as a partial agonist (60%) and an antagonist, respectively. This suggests that there is no correlation between agonism at 5-HT1A receptors and prophylactic antimigraine action. In contrast, serotonin, dihydroergotamine, sumatriptan, naratriptan and alniditan, which are effective in acute interruption of migraine attacks, each displayed high efficacy (Emax = 100, 100, 92.6, 79.3, 79.1% respectively) and marked affinity (Ki = 18.7, 0.6, 127, 26.4 and 3.0 nM respectively) at 5-HT1A receptors. EC50 values for agonist stimulation of [35S]-GTP gamma S binding correlated with respective Ki values at 5-HT1A receptors (r = 0.93) and the stimulation of [35S]-GTP gamma S binding by these compounds was antagonised by the selective 5-HT1A antagonist WAY 100,635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl) cyclo-hexanecarboxamide; 100 nM). These data suggest that agonism at 5-HT1A receptors may be involved in some actions of drugs used in acute antimigraine therapy. In comparison with the above compounds, novel ligands targeted at 5-HT1B/1D receptors, such as GR125,743 (N-[4-methoxy-3-(4-methyl-piperazin-1-yl)phenyl] -3-methyl-4-(4-pyridyl)benzamide) and GR 127,935 (N-[4-methoxy-3-(4-methylpiperazin-1-yl)-phenyl]-2'-methyl-4'-(5-m ethyl-1, 2,4-oxadiazol-3-yl)-biphenyl-4-carboxamide), only weakly activated [35S]-GTP gamma S binding (32.4 and 32.1% efficacy) and displayed moderate affinity at 5-HT1A receptors (Kis 53.1 and 49.8 nM) suggesting that they constitute useful tools to differentiate 5-HT1A and 5-HT1B/1D receptor-mediated actions. In conclusion, the present data indicates that several antimigraine agents exhibit marked 5-HT1A receptor activity and that although this is unlikely to be important for prophylactic action it may be relevant to the ancilliary properties of drugs used for acute migraine treatment.  相似文献   

14.
Single-unit recording studies were undertaken in chloral hydrate-anesthetized rats to compare the effects on dorsal raphe cell firing of several putative 5-hydroxytryptamine (HT)1A receptor antagonists, including WAY 100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide), p-MPPI (4-(2-methoxyphenyl)1-[2'-[N-(2"-pyridinyl)-p-iodobenzamido]ethyl] pip erazine), and two newly described 5-HT1A receptor antagonists, NDL-249 [(R)-3-(N-propylamino)-8-fluoro-3, 4-dihydro-2H-1-benzopyran-5-carboxamide] and NAD-299 [(R)-3-N, N-dicyclobutylamino-8-fluoro-3, 4-dihydro-2H-1-benzopyran-5-carboxamide]. Consistent with a 5-HT1A receptor antagonist profile, pretreatment with an approximately equimolar (0.02-0.03 micromol/kg) i.v. dose of each compound caused a significant rightward shift in the dose-response curve for 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin]. Antagonist potency was clearly highest for NAD-299 and WAY 100635, which caused shifts roughly 3 times greater than those for either p-MPPI or NDL-249 (ED50 for 8-OH-DPAT, 1.3 +/- 0.3 microg/kg; after NAD-299, 18.2 +/- 1.0 microg/kg; after WAY 100635, 16.9 +/- 2.9 microg/kg; after NDL-249, 6.0 +/- 1.2 microg/kg; after p-MPPI, 4.7 +/- 1.1 microg/kg). In separate studies, each of the antagonists was administered alone in increasing cumulative doses to evaluate whether they possessed intrinsic agonist activity in this system. At doses below 0.01 micromol/kg, none of the drugs altered firing by more than +/-20% basal rates. At higher doses (>0.1 micromol/kg), WAY 100635, NDL-249, and NAD-299 caused a dose-dependent suppression of dorsal raphe cell firing (ED50 = 0.6 +/- 0.2, 0.7 +/- 0.3, and 0. 9 +/- 0.4 micromol/kg, respectively). However, the ED50 values for inhibition by these drugs were roughly 30 times higher than the doses that antagonized effects of 8-OH-DPAT. Moreover, the inhibition by all three antagonists (but not 8-OH-DPAT) was readily reversed by d-amphetamine (3.2 mg/kg i.v.), a releaser of norepinephrine, suggesting that these effects were likely due to alpha adrenergic receptor blockade rather than to 5-HT1A receptor agonism. Thus, it was concluded that WAY 100635, NAD-299, NDL-249, and p-MPPI all fulfill criteria as 5-HT1A receptor antagonists lacking intrinsic efficacy in the dorsal raphe system. The newly described compound NAD-299 exhibits antagonist potency comparable to that of WAY 100635 in this electrophysiological assay.  相似文献   

15.
The selectivity in coupling of various receptors to GTP-binding regulatory proteins (G proteins) was examined directly by a novel assay entailing the use of proteins overexpressed in Spodoptera frugiperda (Sf9) cells. Activation of G proteins was monitored in membranes prepared from Sf9 cells co-expressing selected pairs of receptors and G proteins (i.e. alpha, beta1, and gamma2 subunits). Membranes were incubated with [35S]guanosine 5'-(3-O-thio)triphosphate (GTPgammaS) +/- an agonist, and the amount of radiolabel bound to the alpha subunit was quantitated following immunoprecipitation. When expressed without receptor (but with beta1gamma2), the G protein subunits alphaz, alpha12, and alpha13 did not bind appreciable levels of [35S]GTPgammaS, consistent with a minimal level of GDP/[35S]GTPgammaS exchange. In contrast, the subunits alphas and alphaq bound measurable levels of the nucleotide. Co-expression of the 5-hydroxytryptamine1A (5-HT1A) receptor promoted binding of [35S]GTPgammaS to alphaz but not to alpha12, alpha13, or alphas. Binding to alphaz was enhanced by inclusion of serotonin in the assay. Agonist activation of both thrombin and neurokinin-1 receptors promoted a modest increase in [35S]GTPgammaS binding to alphaz and more robust increases in binding to alphaq, alpha12, and alpha13. Binding of [35S]GTPgammaS to alphas was strongly enhanced only by the activated beta1-adrenergic receptor. Our data identify interactions of receptors and G proteins directly, without resort to measurements of effector activity, confirm the coupling of the 5-HT1A receptor to Gz and extend the list of receptors that interact with this unique G protein to the receptors for thrombin and substance P, imply constitutive activity for the 5-HT1A receptor, and demonstrate for the first time that the cloned receptors for thrombin and substance P activate G12 and G13.  相似文献   

16.
Mu opioid receptors within the pontine reticular formation contribute to opioid-induced rapid eye movement (REM) sleep inhibition. Mu receptors are coupled to guanine nucleotide binding (G) proteins and this study tested the hypothesis that the micro opioid agonist [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) would activate G proteins in rat brain stem nuclei known to regulate REM sleep. In vitro autoradiography of DAMGO-stimulated [35S]GTPgammaS binding showed that, compared with basal [35S]GTPgammaS binding, DAMGO significantly increased G protein activation in the nucleus pontis oralis (56.2%), nucleus pontis caudalis (57.3%), laterodorsal tegmental nucleus (75.8%), pedunculopontine tegmental nucleus (72.4%), nucleus locus coeruleus (77.2%) and dorsal raphe nucleus (73.4%). DAMGO stimulation of [35S]GTPgammaS binding in nuclei regulating REM sleep suggests that opioid-induced REM sleep inhibition involves activation of G proteins.  相似文献   

17.
The 5-hydroxytryptamine(HT)3 receptor subtype is present in the central nervous system (CNS) in low abundance, and few selective radiolabeled antagonists with high specific activity are available to study these sites. DAIZAC [desamino-3-iodo-(S)-zacopride; (S)-5-chloro-3-iodo-2-methoxy-N-(1-azobicyclo-[2.2. 2]oct-3-yl)benzamide] is a compound with high affinity and selectivity for the 5-HT3 receptor. Scatchard analysis of specific binding to NCB-20 cell membranes gave a Bmax of 340 +/- 58 fmol/mg protein and a KD of 0.14 +/- 0.03 nM, which is in agreement with the value previously reported in rat brain (KD = 0.15 nM). Nonspecific binding of [125I]DAIZAC in NCB-20 cells was <1% of total binding at the KD for DAIZAC compared with 17% in the rat brain preparation. Unlabeled DAIZAC (10 microM) showed minimal ability to displace binding of radiolabeled ligands selected for their affinities for other CNS receptor and uptake carrier binding sites. The discrimination ratio of DAIZAC for the 5-HT3 receptor over the M1 muscarinic binding site, the non-5-HT3 site at which it was most potent, was >2800. Serotonergic antagonists at every other known CNS serotonergic binding sites (3-30 microM) were ineffective in displacing [125I]DAIZAC binding in rat brain membranes. Similarly, antagonists (3-30 microM) for other nonserotonergic receptors and uptake sites were ineffective in displacing [125I]DAIZAC binding. Autoradiographic studies showed highest specific binding in area postrema and nucleus solitarius, with intermediate levels of binding in entorhinal cortex and hippocampus. DAIZAC inhibited 5-HT3 receptor-mediated inward cation current in NCB-20 cells with an IC50 of 0.24 nM. [125I]DAIZAC is a potent and highly selective ligand for in vitro studies of the 5-HT3 receptor.  相似文献   

18.
The novel selective 5-HT1A receptor antagonist radioligand [3H]WAY 100635 ([O-methyl-3H]N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2- pyridyl)cyclohexane-carboxamide) was injected i.v. to mice in an attempt to label in vivo central 5-HT1A receptors. Although 5 min after the i.v. injection of [3H]WAY 100635 (4-7.6 muCi per mouse) the amount of tritium found in the whole brain only accounted for 1.5-1.8% of the injected radioactivity, regional differences in 3H accumulation already corresponded to those of 5-HT1A receptor density. Optimal data were obtained 1 h after [3H]WAY 100635 injection as the distribution of 3H in brain was exactly that of 5-HT1A receptor binding sites in mouse brain sections labelled in vitro with [3H]WAY 100635. In particular, high level of labelling was found in the lateral septum, gyrus dentatus and CA1 area of Ammon's horn in the hippocampus, dorsal raphe nucleus and entorhinal cortex. No labelling was found in he substantia nigra, and 3H accumulated in the cerebellum represented only 12-14% of that found in the hippocampus. Pretreatment with various drugs indicated that only 5-HT1A receptor ligands were able to decrease the accumulation of 3H in all the brain areas examined except in the cerebellum. Assuming that only non-specific binding took place in the latter structure, it was possible to calculate the ID50 values of 5-HT1A receptor agonists (8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), S 14506 (1-[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphthyl+ ++)piperazine) and S 20499 ((+)-4-[N-(5-methoxy-chroman-3-yl)-N-propylamino]butyl-8- azaspiro-(4,5)-decane-7,9-dione)) and antagonists (spiperone, (-)-tertatolol, (+)-WAY 100135 (N-tert-butyl-3,4-(2-methoxyphenyl)piperazin-1-yl-2-phenyl- propanamide)) as inhibitors of 3H accumulation in the hippocampus of [3H]WAY 100635-injected mice. Comparison of these values with the in vitro affinity of the same ligands for hippocampal 5-HT1A receptors revealed marked variations in the capacity of 5-HT1A receptor agonists and antagonists to reach the brain when injected via the subcutaneous route in mice.  相似文献   

19.
Metabotropic activities of endomorphin 1, a candidate for endogenous mu-opioid receptor ligands, were examined in comparison with the actions of [D-Ala2, N-Me-Phe4, Gly5ol]-enkephalin/DAMGO, a well-known synthetic mu-opioid agonist. Endomorphin 1 stimulated [35S]GTPgammaS binding to synaptic membranes from the mouse amygdala in a naloxone-reversible manner. DAMGO had the same effect in such preparations. In in situ [35S]GTP-gammaS binding experiments using brain sections, both endomorphin 1 and DAMGO similarly stimulated this binding in specific cellular locations throughout the brain regions. These findings strongly support the view that endomorphin 1 selectively acts on a mu-opioid receptor.  相似文献   

20.
Rats were trained to discriminate 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.1 mg/kg i.p.) or 5-methoxy-N,N-dimethyltryptamine (5-OMe-DMT, 1.25 mg/kg i.p.), a selective and nonselective 5-hydroxytryptamine1A (5-HT, serotonin) receptor agonist, respectively, from saline in a two-lever procedure. The selective 5-HT1A receptor agonist ipsapirone substituted completely for 8-OH-DPAT (ED50, 1.52 mg/kg) and 5-OMe-DMT substituted partially for 8-OH-DPAT, whereas 8-OH-DPAT (ED50, 0.07 mg/kg) and ipsapirone (ED50, 4.15 mg/kg) substituted completely for 5-OMe-DMT. These results suggest that the discriminative stimulus properties of both 8-OH-DPAT and 5-OMe-DMT are 5-HT1A receptor mediated, although 5-OMe-DMT may involve an additional interaction with other 5-HT receptor subtypes. 5-OMe-DMT substituted for 8-OH-DPAT after application in the lateral ventricle (ED50, 3.0 micrograms/rat) and the dorsal raphe nucleus (DRN, 1.1 micrograms/rat). After application in the DRN (ED50 range, 1.4-5.0 micrograms/rat) and the median raphe nucleus (2.3 micrograms/rat), and after bilateral application into the CA-4 region of the dorsal hippocampus (4.1 micrograms/rat), 8-OH-DPAT also produced responding on the 8-OH-DPAT lever. Ipsapirone also substituted for 8-OH-DPAT after application into the DRN and the hippocampus (ED50S, 38 and 62 micrograms/rat, respectively). The 5-HT1A mixed agonist-antagonist (1-(2-methoxyphenyl) 4-[4-(2-pthalimido)butyl]piperazine, i.p. NAN-190) attenuated the discriminative stimulus effects of 8-OH-DPAT injected i.p. (0.1 mg/kg), into the DRN (10 micrograms) or into the hippocampus (2 x 10 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号