共查询到18条相似文献,搜索用时 46 毫秒
1.
翟玉兰 《信息技术与信息化》2023,(3):137-140
由于奇异值分解可以有效地提取图像的主要特征,为了提高算法的鲁棒性,通过将矩阵的奇异值分解引入振幅-相位恢复算法,提出了基于奇异值分解的抗噪声多强度相位恢复算法。首先,将奇异值分解引入振幅-相位恢复算法,在振幅-相位恢复算法取平均值之后,对恢复的图像进行奇异值分解,奇异值较小的分量认为是噪声,保留奇异值较大的分量,将奇异值较小的分量置为0。其次,通过数值模拟实验可以看出,通过奇异值分解,不仅可以去除测量过程中所引入的噪声,而且还可以充分利用自然图像稀疏的特性,加快振幅-相位恢复算法的收敛,且具有更少的算法运行时间。 相似文献
2.
3.
基于奇异值分解的特征跟踪方法 总被引:1,自引:0,他引:1
在传统的基于模板匹配的跟踪方法中,均是给定一个模板,然后从图像中各个位置取出一个个与模板大小一致的区域进行相似性度量,找出与模板距离最小的一个区域作为当前模板,以便进行下一步的匹配跟踪工作。在景象匹配和相关跟踪过程中,由于所面临的大多数是变化的场景,实时获取的图像与预存模板之间存在比较大的差异,传统相关匹配方法的应用就会受到限制;而且在跟踪过程中,随时更新模板会造成跟踪性能对扰动过分敏感,从而产生漂移。首先拍摄目标不同角度的图像(尽可能包含目标可能出现的所有情况),构成目标图像训练集合,抽取出特征矩阵,对它进行奇异值分解,构成一个关于目标的多维空间。然后再用匹配方法在全局范围搜索,找出目标的大致位置,并利用收敛方法在确定的大致位置内进行搜索,确定目标的仿射变换系数,从而得到一个目标位置的确切描述。 相似文献
4.
5.
基于奇异值分解的图像去噪 总被引:3,自引:0,他引:3
提出了利用奇异值分解去除图像噪声的方法。从矩阵的角度出发,通过对图像矩阵进行奇异值分解,将包含图像信息的矩阵分解到一系列奇异值和奇异值矢量对应的子空间中,然后通过有效奇异值重构图像矩阵达到去噪目的。试验利用MATLAB通过对MRI(核磁共振)医学图像进行去噪处理,验证了奇异值分解的去噪效果,并且通过对多幅图像的试验结果进行分析,得到了去噪重构图像时所需有效奇异值数目的统计值。 相似文献
6.
基于奇异值分解的小波域水印算法 总被引:2,自引:0,他引:2
结合奇异值分解(SVD)和离散小渡变换(DWT)的特点,提出一种基于SVD的小波域数字图像水印算法。该算法将二值水印图像经过取反置乱后嵌入到原始图像小波中频子带的奇异值中,具有较高的抗攻击能力。仿真实验证明,该算法不仅具有良好的透明性,而且对常见攻击,如:叠加噪声、JPEG压缩、滤波及几何攻击具有较好的鲁棒性。 相似文献
7.
基于奇异值分解的数字图像水印方法 总被引:137,自引:6,他引:137
随着计算机和网络技术的飞速发展,数字图像、音频和视频产品愈来愈需要一种有效的版权保护方法,另外通信系统在网络环境下的信息安全问题也日益显露出来.数字图像水印技术为上述问题提供了一个潜在的解决方案.所谓水印技术就是将数字、序列号、文字、图像标志等版权信息嵌入到多媒体数据中,以起到版权保护、秘密通信、数据文件的真伪鉴别和产品标志等作用.本文提出了一种新的基于奇异值分解的数字水印算法并且对该方法的理论基础给出分析.实验结果表明这种方法要比目前提出的流行算法鲁棒. 相似文献
8.
针对空间分解类信噪比(SNR)估计算法中子空间维数估计复杂度较高,低信噪比下估计偏差较大的问题,提出了一种改进的子空间维数估计算法。该算法首先利用样本自相关矩阵的奇异值序列进行后向差分得到梯度序列,对梯度序列每一项与后5项之和的比值进行搜索,最大比值所对应的奇异值序号作为信号子空间维数,最后计算信噪比。合适数据长度下的仿真结果表明:在信噪比-5 dB~20 dB范围内,常规通信信号的信噪比估计平均偏差小于0.5 dB,标准差小于1 dB;该算法提升了低信噪比下的估计性能,运算量较小,无需知道调制方式、载波频率、符号率等先验信息,在低信噪比时对信噪比时变的跟踪估计更为准确,且对复杂高阶调制信号同样适用。 相似文献
9.
提出一种基于领域本体潜在语义索引和奇异值分解的图像数据查询算法,将查询扩展向量映射到潜在语义空间,根据相似度计算方法计算查询向量与图像文档之间的相似度,并将相似度大于阀值的文档作为检索结果降序排列返回给用户.该算法能更有效地提高图像检索的查准率和查全率. 相似文献
10.
11.
基于局部交叉熵的图像匹配跟踪算法 总被引:6,自引:0,他引:6
交叉熵值的大小反映了模板图像与实时图像之间的信息量差异大小,从平均意义上来表征模板图像与实时图像之间的信息量差异量。为了解决机裁成像光电吊舱系统中的图像辐射失真和几何失真问题,提出了基于局部交叉熵的图像匹配跟踪算法。由于交叉熵值最小准则有利于信息量丰富的图像匹配,因此该算法不仅具有抗噪能力,而且具有良好的抗辐射失真和抗几何失真的能力。仿真试验表明:在辐射失真情况下,该算法具有稳健的匹配跟踪能力,适应能力强,是一种很实用的匹配跟踪算法。 相似文献
12.
13.
14.
Saliency detection has gained popularity in many applications, and many different approaches have been proposed. In this paper, we propose a new approach based on singular value decomposition (SVD) for saliency detection. Our algorithm considers both the human-perception mechanism and the relationship between the singular values of an image decomposed by SVD and its salient regions. The key concept of our proposed algorithms is based on the fact that salient regions are the important parts of an image. The singular values of an image are divided into three groups: large, intermediate, and small singular values. We propose the hypotheses that the large singular values mainly contain information about the non-salient background and slight information about the salient regions, while the intermediate singular values contain most or even all of the saliency information. The small singular values contain little or even none of the saliency information. These hypotheses are validated by experiments. By regularization based on the average information, regularization using the leading largest singular values or regularization based on machine learning, the salient regions will become more conspicuous. In our proposed approach, learning-based methods are proposed to improve the accuracy of detecting salient regions in images. Gaussian filters are also employed to enhance the saliency information. Experimental results prove that our methods based on SVD achieve superior performance compared to other state-of-the-art methods for human-eye fixations, as well as salient-object detection, in terms of the area under the receiver operating characteristic (ROC) curve (AUC) score, the linear correlation coefficient (CC) score, the normalized scan-path saliency (NSS) score, the F-measure score, and visual quality. 相似文献
15.
《Journal of Visual Communication and Image Representation》2014,25(7):1625-1630
We describe a new no-reference blur index for still images based on a singular value curve (SVC). The algorithm is composed of two steps. First, the singular value decomposition is performed on the image to be blur-assessed. Then an image blur index is constructed from the singular value curve. Experimental results obtained on four simulated blur databases and on the Real Blur Image Database show that the proposed SVC algorithm achieves high correlation against human judgments when assessing the blur distortion of images. 相似文献
16.
现有基于奇异值分解(SVD)的彩色信息加密系统提供了一种光学矩阵分解方案、安全的密文和敏感的密钥。高维张量奇异值分解(HOSVD)是SVD矩阵的自然线性延伸,提出了一种基于HOSVD的彩色图像加密算法。在加密过程中,HOSVD比SVD提供了更多的密文乘法组合次序。这些乘法组合次序可以有效地增加未经授权的解密难度。在解密过程中,HOSVD的重建精度比SVD更高。这些优点提高了准确性、安全性和鲁棒性。通过对100个图像测试数据集的计算机仿真验证了该算法的可行性。 相似文献
17.
基于特征匹配的影像可匹配性研究 总被引:1,自引:3,他引:1
对基于特征匹配的影像可匹配性评价方法进行了探讨。从分析影像所包含的信息量入手,提出了通过计算影像的信息熵和累加梯度值进行基于特征匹配的影像可匹配性评价方法。通过基于角点特征和Hausdorff距离的影像匹配实验,发现影像信息熵和累加梯度值与影像可匹配性(即正确匹配概率)之间存在很强的相关性,尽管由于地表景观的不同,表现出的具体规律略有差异,但都表现出匹配正确率随影像信息熵和累加梯度的增大而增大的趋势。因此,可通过对影像信息量的评价来进行基准图的自动选取和飞行路径的规划;在实时匹配导航过程中,可根据获取的每一实时影像所含信息量,来决定是否进行匹配,这样既可以保证匹配的正确性,避免误导,又可节省匹配时间。提出方法对基于灰度相关的影像可匹配性评价具有借鉴意义。 相似文献
18.