首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Hilbert-Huang变换在电晕放电辐射信号分析中的应用   总被引:1,自引:0,他引:1  
提出利用Hilbert-Huang变换(HHT)对电晕放电辐射信号进行分析,该方法通过经验模式分解(EMD)将电晕放电辐射信号分解成有限个基本模式分量(IMF),然后根据Hilbert变换求出各个基本模式分量的瞬时频率,从而分析出电晕放电辐射信号的频率成分;同时在EMD分解的基础上构成时空滤波器,完成信号的降噪处理。仿真和实例分析表明:该方法与传统时频分析方法相比,有更高的分辨率,能够更加准确、有效地应用于对电晕放电辐射信号的时频分析;与小波降噪技术相比,该方法在信号降噪上具有很强的自适应能力。  相似文献   

2.
研究电晕放电辐射信号既有利于消除其危害又有助于加强对其利用,小波变换是分析电晕放电辐射信号的一种很好的方法。采用相关系数法选择最佳小波,以史坦无偏估计法来确定小波重构的阈值,并根据采样率来确定分解层,对电晕放电辐射信号进行降噪处理。在小波降噪的基础上,分析了电晕放电辐射信号时域波形的一阶形状参量,得出电晕放电辐射信号的脉冲变换时间随电压升高而减小、相同电压下正电晕放电辐射信号的脉冲变换时间要大于负电晕的脉冲变换时间等结论。  相似文献   

3.
特高频法检测GIS局部放电时往往受到不同类型的噪声干扰,天线采集到微弱的特高频信号容易被噪声淹没,导致局部放电检测不准确甚至检测系统在现场无法正常工作等问题。针对上述问题,提出一种基于改进EMD的GIS局部放电特高频信号降噪方法。该方法利用对偶树复小波(Dual-Tree Complex Wavelet Transform,DTCWT)对经验模态分解(Empirical Mode Decomposition,EMD)降噪法进行改进并对GIS局部放电特高频信号进行降噪。利用EMD法将含噪信号分解为一系列的固有模态函数(IMF)分量,然后利用联合分布模型进行每个IMF分量的DT-CWT降噪的小波系数估计,对每个IMF分量进行降噪。最后将降噪后的IMF分量进行信号重构得到降噪后的信号。GIS局部放电特高频信号降噪试验结果表明了该方法达到很好的噪声与非噪声信号的分离效果,拥有较高信噪比,以及能够保持早期局部放电特高频信号特征。  相似文献   

4.
对检测到的电缆局部放电信号降噪是实现电缆绝缘诊断与评估的前提,为此提出一种基于自适应噪声的完备集合经验模态分解(CEEMDAN)与改进小波阈值的电缆局部放电信号降噪方法。首先,采用CEEMDAN算法将染噪局部放电信号进行分解,得到数个模态分量;然后,计算模态分量的峭度值,筛选出有效特征分量并重构;最后,将重构信号通过改进小波阈值法再次降噪去除冗余噪声,得到降噪后的局部放电信号。将该方法、传统小波阈值法及集合经验模态分解与改进小波阈值法分别用于不同噪声强度下局部放电仿真信号的降噪处理,结果表明该方法具有更高的信噪比与波形相似系数,能有效抑制周期性窄带干扰与白噪声。  相似文献   

5.
为了提取局部放电信号的特征,提出一种基于经验模态分解(EMD)和固有模态函数(IMF)重构算法的局部放电噪声抑制方法.首先对含有噪声的局部放电信号进行经验模态分解,得到含特征频率的固有模态函数,然后对所得的固有模态函数分量进行自适应阈值处理后重构,从而抑制噪声干扰.相比于常规的小波去噪算法,该方法具有自适应性强,不受小波函数和最佳小波分解层数选取的限制等优点,而且实现了阈值和固有模态函数阈值处理层数的自动选取.分别以仿真信号和实际信号为例,证明了该方法的有效性.  相似文献   

6.
局部放电(Partial Discharge, PD)用于高压电缆在线监测时,采集到的信号包含多种噪声,白噪声是最常见、影响最广泛的一种。为了抑制白噪声的影响,提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)的局部放电信号降噪方法。采用变分模态分解对含噪局部放电信号进行分解,得到频率从低到高的模态分量后,计算各个变分模态分量的峭度值,选取脉冲特征分量进行重构,利用小波自适应阈值对重构信号再次降噪。与小波变换阈值法对比在不同噪声环境下的降噪结果,结果从均方误差、波形相似系数定量优于小波标准软阈值降噪法和小波全局硬阈值降噪法。仿真和现场实验结果表明,该方法可以有效去除噪声信号,能够较为完整地保留原始信号波形。  相似文献   

7.
在含噪信号中提取有效的局部放电信号时,传统的小波阈值降噪方法只对小波分解的高频部分进行降噪处理,而忽略了低频部分噪声对局部放电信号的影响。针对该方法的缺陷,本文提出一种基于自适应阈值的小波全频降噪方法。该方法根据噪声的小波分解系数随尺度增大而减小的特点,采用随尺度变化的自适应阈值对高频部分噪声进行处理,采用传统的固定阈值对低频部分噪声进行处理,从而实现对局部放电信号的小波全频降噪处理。实验数据表明:与传统的小波阈值降噪方法相比,小波全频降噪方法的均方根误差降低了19.3%,噪声抑制比和噪声降低水平分别提高56.4%、10.8%。由此验证了自适应阈值的小波全频降噪方法的降噪效果优于传统小波阈值降噪方法。  相似文献   

8.
针对桥梁应变信号的特点,提出了一种基于经验模态分解法的降噪方法。当信号中噪声分布在某些特定频段且与信号混叠时,现有的降噪方法如小波阈值法无法很好地对其进行处理。本文在对桥梁应变信号进行经验模态分解的基础上,具体分析分解后的本征模函数分量,对含噪较大的本征模函数分量进行特定的阈值滤波处理,并将处理后的本征模函数分量与含噪较小的本征模函数分量以及残余分量进行信号重构,得到降噪后的桥梁应变信号。将此方法用于实际测得的数据,实验结果表明,其能在保留原始信号特征的前提下,消除桥梁应变信号中的噪声,从而达到降噪的目的。  相似文献   

9.
局部放电是电网稳定运行的隐患,有必要对电缆、电气设备的局部放电(PD)进行实时、准确的分布式在线监测。为了解决传统PD信号降噪算法中降噪效果较差、占用算力资源较多、降噪速度较慢、自适应性较差等问题,提出了一种基于灰狼算法优化变分模态分解(GWO-VMD)的PD信号降噪算法。该算法首先利用灰狼优化算法(GWO)自适应选取VMD分解参数k和α获得分解后各模态分量;然后根据最小包络熵选择并重构模态分量;最后利用自适应阈值小波函数对分解重构得到的PD信号进行处理,实现了对PD信号快速有效的自适应降噪。本文对理论PD信号和实测PD信号进行仿真降噪处理,实验结果表明所提GWO-VMD算法在降噪效果、算力资源利用率和降噪速度上有明显提升,可为基于电力物联技术的局部放电在线监测系统边缘计算优化设计提供有益参考。  相似文献   

10.
针对铁路继电器参数的噪声问题,为提取其有效信息,该文建立一种基于改进波形匹配延拓法优化的经验模态分解(EMD)算法,利用自相关函数分离含噪信号,小波阈值去除噪声的混合降噪模型。首先根据继电器参数特点对波形匹配方法进行改进,重新定义匹配误差度公式,并引入匹配精度误差系数,采用改进波形匹配延拓法优化EMD分解过程产生的端点效应,得到有效的固有模态分量(IMF)和余项;然后求解其自相关函数,并根据自相关函数图像结合噪声信号特征分离出含噪分量;最后对含噪分量进行小波阈值去噪,去噪后与剩余分量和余项结合,得到重构后的参数序列。同时,提出利用结构相似性(SSIM)评价指标,结合信噪比(SNR)、方均误差(MSE)指数对模型可靠度评判。通过结果分析,并与EMD分解后重构和小波阈值去噪方法作对比,证明该模型可优化铁路继电器参数的降噪效果。  相似文献   

11.
针对传统硬阈值法和软阈值法的缺陷,提出了改进阈值函数的小波熵方法。该方法对含噪局放信号进行小波分解,基于小波熵自适应选取阈值,并引入一种改进阈值函数对小波系数进行处理,最后重构得到去噪后信号。典型仿真信号和实测信号的去噪结果表明,提出的方法能够有效去除局放信号中的白噪声。  相似文献   

12.
变压器局部放电监测逐层最优小波去噪算法   总被引:1,自引:0,他引:1  
针对用于局部放电监测的去除白噪声算法会造成去噪脉冲信号波形畸变,脉冲幅值等波形参数产生较大误差,不利于进一步采用脉冲波形分析去除脉冲干扰的问题。为此根据局部放电信号在小波域上的分布特点,提出了各尺度信号分解和重构的最优小波选择方法,并给出了各尺度小波阈值的计算方法。仿真信号的最优小波去噪结果显示去噪信号具有波形畸变率低和幅值误差小的特点;实测信号的最优小波去噪结果证明提出的最优小波去噪算法能有效去除局部放电监测信号中的噪声,在局部放电在线监测应用中具有良好的去噪效果。  相似文献   

13.
遗传算法用于局部放电小波自适应阈值去噪   总被引:2,自引:2,他引:0  
小波去噪用于局部放电信号在线监测具有良好的效果,阈值选取与局部放电去噪后信号的畸变具有紧密联系。为提高局部放电监测中小波去噪的自适应能力,并降低去噪信号的畸变率,提出一种小波自适应最优阈值去噪算法,用于变压器局部放电脉冲信号去噪。该方法采用小波对局部放电信号进行分解,在阈值选择时采用基于史坦无偏似然估计(SURE)的最优阈值自适应选择方法,并引入一种新的具有多阶导数的阈值函数,结合二进制遗传算法全局自适应搜索最优阈值,使最优阈值自适应寻优速度大大提高。对局部放电仿真信号和现场局部放电信号的去噪结果表明,该方法与Donoho阈值计算公式及标准软阈值法相比,能更好地去除局部放电信号中的白噪声,去噪信号失真度较小,具有良好的应用价值。  相似文献   

14.
为了提高局部放电在线监测中小波去噪的自适应能力,并降低去噪信号的畸变率,提出了一种用于电力设备局部放电信号去噪的粒子群优化小波自适应阈值方法。该方法采用小波对局部放电信号进行分解,在阈值选择时采用基于SURE无偏估计的最优阈值自适应选择方法,结合粒子群优化算法进行全局自适应搜索最优阈值,使最优阈值自适应寻优速度大大提高。为了验证其去噪效果,还引入遗传算法对小波自适应阈值法进行优化计算。对局部放电仿真信号与实测局部放电信号的去噪结果表明,本文与标准软阈值法和遗传算法优化小波自适应阈值法相比,能更好地去除局部放电信号中的白噪声,计算速度更快,具有良好的去噪效果和应用价值。  相似文献   

15.
抑制干扰是GIS局部放电在线监测的关键技术之一。尽管局部放电超高频检测方法能够有效避开低频干扰,但来自测量系统的白噪声仍然为准确测量局部放电带来困难。为有效抑制白噪声,提高局部放电超高频法的测量精度,本文提出一种用于GIS局部放电超高频信号的自适应小波分解去噪算法,该算法基于每层小波分解尺度系数能量最大的原则,逐层自适应选取最优的小波进行分解,并结合Donoho提出的软阈值法进行去噪。对人工绝缘缺陷产生的四种GIS超高频信号的去噪结果证明了该算法较其他小波算法能更好地去除白噪声且去噪后信号波形畸变较小,具有很好的应用前景。  相似文献   

16.
何青霜  谢敏  周凯 《电测与仪表》2022,59(10):60-66
局部放电(简称局放)检测是探测电力电缆绝缘缺陷的有效手段。针对传统短时奇异值分解(STSVD)白噪声抑制方法存在的不足,文中提出了一种基于时域能量与自适应奇异值阈值的局放信号白噪声抑制方法。该方法利用自适应奇异值阈值估计策略对重构奇异值个数进行准确估计,并在此基础上结合时域能量准则仅对局放脉冲区域进行去噪处理,从而极大地提升了算法的执行效率。对仿真和实测含噪局放信号进行处理,并将去噪结果与现有的自适应奇异值分解(ASVD)、传统STSVD及小波变换去噪结果进行对比。研究结果表明:相比于ASVD、小波变换去噪方法,文中所提去噪方法能够取得更好的去噪效果,去噪后波形误差更小;相比于传统STSVD,文中所提方法能够有效解决去噪后存在的毛刺干扰问题,且计算速率更快。  相似文献   

17.
黄浩  胡峰 《电工标准与质量》2006,21(4):27-30,37
基于EMD理论,采用一种电能质量信号消噪的新方法,即首先对电能质量信号进行EMD分解,得到一系列的IMF分量和一个剩余分量,根据噪声和信号在不同尺度的IMF分量上的表现特性,分别将其进行阈值处理,再将消噪后的IMF分量重构,从而得到消噪后的电能质量信号.仿真结果表明,该方法的消噪效果较好.  相似文献   

18.
局部放电(PD)试验是检测电力电缆绝缘性能的重要手段,由于试验现场电磁环境比较复杂,提取所得的PD信号已被噪声淹没。为得到较为真实的PD信号,提出了一种基于小波变换和高阶偏微分方程(PDE)相结合的去噪方法。利用小波变换提供较好的局部放电信号预处理和后处理平台,对低频子信号进行四阶PDE迭代去噪,同时采用效果评价指数信噪比(SNR)作为迭代终止条件。将该方法的去噪效果与传统的小波阀值去噪效果进行了比较,经过计算和仿真分析表明,文中方法能够较好的保留信号边缘与细节,比传统小波阀值去噪具有更优越的去噪性能。  相似文献   

19.
针对局部放电信号去噪,传统的小波阈值法因小波基、阈值和分解层数这三个因素的影响,会使去噪后的波形发生畸变,产生较大误差。为了减小这些因素的干扰,本文提出了基于小波阈值去噪的新方法。首先利用波形相似法选取最优小波基,其次通过对理想局部放电信号和高斯白噪声进行每个尺度的小波分解与重构,并结合统计学知识确定局部放电信号去噪的阈值,最后对高频信号和低频信号进行能量分析,确定最优的分解层数。利用该方法和传统的小波阈值法对仿真放电信号去噪,去噪结果表明新方法在信噪比、均方根误差、相关系数和波形畸变率四个不同的指标上都得到了有效的提升,定性和定量的分析验证了该方法的有效性,实测的去噪结果表明新方法去噪效果令人满意,为局部放电信号去噪提供了一种新思路。  相似文献   

20.
黄建才  朱永利 《高电压技术》2012,38(8):1981-1987
为了去除污秽绝缘子安全区泄漏电流中的噪声,提出了采用小波变换去噪时分解层数的定量计算方法。根据小波去噪时需对细节进行阈值处理、安全区泄漏电流的能量主要集中在低频周期成分上的结论,提出了确定小波变换去除安全区泄漏电流噪声时最佳分解层数的判据;并以此判据为基础,提出并证明了计算小波分解层数的公式。对在高压试验中和现场采集到的绝缘子泄漏电流进行了小波去噪研究,结果表明:在相同母小波和阈值前提下,采用所提公式获得的分解层数去噪时的效果优于采用其他分解层数时的效果。从而得出结论:所提公式计算出的值为最佳分解层数,按此值去噪时效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号