首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sought to explore the emerging concept that malonyl-CoA generation, with concomitant suppression of mitochondrial carnitine palmitoyltransferase I (CPT I), represents an important component of glucose-stimulated insulin secretion (GSIS) by the pancreatic beta-cell (Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE: Malonyl-CoA and long-chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 267:5802-5810, 1992). Accordingly, pancreases from fed rats were perfused with basal (3 mM) followed by high (20 mM) glucose in the absence or presence of 2 mM hydroxycitrate (HC), an inhibitor of ATP-citrate (CIT) lyase (the penultimate step in the glucose-->malonyl-CoA conversion). HC profoundly inhibited GSIS, whereas CIT had no effect. Inclusion of 0.5 mM palmitate in the perfusate significantly enhanced GSIS and completely offset the negative effect of HC. In isolated islets, HC stimulated [1-14C]palmitate oxidation in the presence of basal glucose and markedly obtunded the inhibitory effect of high glucose. Directional changes in 14C incorporation into phospholipids were opposite to those of 14CO2 production. At a concentration of 0.2 mM, 2-bromostearate, 2-bromopalmitate and etomoxir (all CPT I inhibitors) potentiated GSIS by the pancreas and inhibited palmitate oxidation in islets. However, at 0.05 mM, etomoxir did not influence insulin secretion but still caused significant suppression of fatty acid oxidation. The results provide more direct evidence for a pivotal role of malonyl-CoA suppression of CPT I, with attendant elevation of the cytosolic long-chain acyl-CoA concentration, in GSIS from the normal pancreatic beta-cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Insulin secretion from beta cells in the islets of Langerhans can be stimulated by a number of metabolic fuels, including glucose and glyceraldehyde, and is thought to be mediated by metabolism of the secretagogues and an attendant increase in the ATP:ADP ratio. Curiously, glycerol fails to stimulate insulin secretion, even though it has been reported that islets contain abundant glycerol kinase activity and oxidize glycerol efficiently. We have reinvestigated this point and find that rat islets and the well differentiated insulinoma cell line INS-1 contain negligible glycerol kinase activity. A recombinant adenovirus containing the bacterial glycerol kinase gene (AdCMV-GlpK) was constructed and used to express the enzyme in islets and INS-1 cells, resulting in insulin secretion in response to glycerol. In AdCMV-GlpK-treated INS-1 cells a greater proportion of glycerol is converted to lactate and a lesser proportion is oxidized compared with glucose. The two fuels are equally potent as insulin secretagogues, despite the fact that oxidation of glycerol at its maximally effective dose (2-5 mM) occurs at a rate that is similar to the rate of glucose oxidation at its basal, nonstimulatory concentration (3 mM). We also investigated the possibility that glycerol may signal via expansion of the glycerol phosphate pool to allow enhanced fatty acid esterification and formation of complex lipids. Addition of Triacsin-C, an inhibitor of long-chain acyl-CoA synthetase, to AdCMV-GlpK-treated INS-1 cells did not inhibit glycerol-stimulated insulin secretion despite the fact that it blocked glycerol incorporation into cellular lipids. We conclude from these studies that glycerol kinase expression is sufficient to activate glycerol signaling in beta cells, showing that the failure of normal islets to respond to this substrate is due to a lack of this enzyme activity. Further, our studies show that glycerol signaling is not linked to esterification or oxidation of the substrate, but is likely mediated by its metabolism in the glycerol phosphate shuttle and/or the distal portion of the glycolytic pathway, either of which can lead to production of ATP and an increased ATP:ADP ratio.  相似文献   

3.
Chronic exposure of pancreatic beta-cells to high glucose has pleiotropic action on beta-cell function. In particular, it induces key glycolytic genes, promotes glycogen deposition, and causes beta-cell proliferation and altered insulin secretion characterized by sensitization to low glucose. Postglycolytic events, in particular, anaplerosis and lipid signaling, are thought to be implicated in beta-cell activation by glucose. To understand the biochemical nature of the beta-cell adaptive process to hyperglycemia, we studied the regulation by glucose of lipogenic genes in the beta-cell line INS-1. A 3-day exposure of cells to elevated glucose (5-25 mmol/l) increased the enzymatic activities of fatty acid synthase 3-fold, acetyl-CoA carboxylase 30-fold, and malic enzyme 1.3-fold. Pyruvate carboxylase and citrate lyase expression remained constant. Similar observations were made at the protein and mRNA levels except for malic enzyme mRNA, which did not vary. Metabolic gene expression changes were associated with chronically elevated levels of citrate, malate, malonyl-CoA, and conversion of glucose carbon into lipids, even in cells that were subsequently exposed to low glucose. Similarly, fatty acid oxidation was suppressed and phospholipid and triglyceride synthesis was enhanced independently of the external glucose concentration in cells preexposed to high glucose. The results suggest that a coordinated induction of glycolytic and lipogenic genes in conjunction with glycogen and triglyceride deposition, as well as increased anaplerosis and altered lipid partitioning, contribute to the adaptive process to hyperglycemia and glucose sensitization of the beta-cell.  相似文献   

4.
Islets undergo a number of upregulatory changes to meet the increased demand for insulin during pregnancy, including an increase in glucose-stimulated insulin secretion with a reduction in the stimulation threshold. Treatment with the lactogenic hormone prolactin (PRL) in vitro has been shown to induce changes in islets similar to those observed during pregnancy. We examined cAMP production in islets treated with PRL to determine if changes in cAMP are involved in the upregulation of insulin secretion. Insulin secretion and cAMP concentrations were measured from islets in response to a suprathreshold (6.8 mmol/l) or high (16.8 mmol/l) glucose concentration in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine. Insulin secretion increased by 2.1-, 5.0-, and 5.9-fold at the suprathreshold glucose concentration and by 1.6-, 2.3-, and 2.9-fold at the higher glucose concentration after 1, 3, and 5 days of PRL treatment, respectively. After a similar pattern, cAMP metabolism increased by 1.2-, 1.6-, and 2.1-fold at the suprathreshold glucose concentration and by 1.2-, 1.7-, and 2.2-fold at the high glucose concentration after 1, 3, and 5 days of PRL treatment, respectively. The similar increases in insulin secretion and cAMP concentration suggest that changes in cAMP metabolism are involved in lactogen-induced upregulation of insulin secretion. To gain additional insight into the role of cAMP in the upregulation of islet function after lactogen treatment, we examined the relationship between changes in cAMP concentration and insulin secretion. Under all conditions (differing glucose concentrations and time periods), the increase in insulin release was directly proportional to the increase in cAMP. Thus increased glucose-stimulated insulin secretion from lactogen-treated islets could be accounted for by increased generation of cAMP and did not appear to require any further specific changes in intracellular processes mediated by cAMP. Because the PRL receptor is not directly involved in cAMP metabolism, the lactogen-induced increase in cAMP was most likely due to the increase in glucose metabolism that we have previously demonstrated in PRL-treated islets and in islets during pregnancy.  相似文献   

5.
1. The cytochrome P450 (CYP) mixed-function oxidase system is widely distributed in body tissues and plays a key role in the metabolism of endogenous and exogenous compounds. Little attention has been paid to the expression of the system in the islets of Langerhans. The current study has examined the expression and potential role of the CYP1A family within the islets of Langerhans of control and 3-methylcholanthrene (3-MC)-induced Wistar rats. 2. CYP1A expression within pancreatic slices and islets from 3-MC-induced and control rats demonstrated that CYP1A-like protein levels were induced by 3-MC pretreatment (25 mg kg-1 day-1; i.p. for 3 days). 3. Effects of 3-MC-induction on beta-cell secretory responsiveness were investigated by use of rat collagenase-isolated islets. Insulin release from control islets incubated with 3 mM glucose (basal) was 1.4 +/- 0.2 ng/islet h-1 (mean +/- s.e.mean, n = 7). Incubation with 16.7 mM glucose, 25 mM KCl, 100 microM arachidonic acid, or 100 microM carbachol caused a 4.4, 7.0, 4.0 and 4.2 fold, respectively, increase in insulin release (P < 0.001). Forskolin (2 microM), or phorbol 12-myristic 13-acetate (10 nM) potentiated glucose-stimulated insulin release 1.2 and 1.6 fold (P < 0.01) whereas adenalin (1 microM) caused a 76% inhibition (P < 0.01). 4. Islets from 3-MC pretreated animals displayed similar responsiveness to all agents tested except arachidonic acid, carbachol and forskolin. Insulin release in response to arachidonic acid and carbachol was enhanced 5.2 and 5.0 fold, respectively, by 3-MC pretreatment (P < 0.001 compared to control islets incubated with 3 mM glucose); the effect of forskolin on insulin output was significantly decreased (20%; P < 0.01) compared to control islets. 5. 3-MC pretreatment did not cause any significant differences in food intake, plasma glucose or total islet insulin content. Incubation of islets with 3-MC in vitro (1 microM - 10 mM) did not affect basal or glucose-stimulated insulin release. 6. These data suggest that CYP1A-like protein expression within the pancreatic islets of Langerhans is inducible and may have a role in the alteration of pancreatic beta-cell secretory responsiveness.  相似文献   

6.
The energy requirements of most cells supplied with glucose are fulfilled by glycolytic and oxidative metabolism, yielding ATP. In pancreatic beta-cells, a rise in cytosolic ATP is also a critical signaling event, coupling closure of ATP-sensitive K+ channels (KATP) to insulin secretion via depolarization-driven increases in intracellular Ca2+ ([Ca2+]i). We report that glycolytic but not Krebs cycle metabolism of glucose is critically involved in this signaling process. While inhibitors of glycolysis suppressed glucose-stimulated insulin secretion, blockers of pyruvate transport or Krebs cycle enzymes were without effect. While pyruvate was metabolized in islets to the same extent as glucose, it produced no stimulation of insulin secretion and did not block KATP. A membrane-permeant analog, methyl pyruvate, however, produced a block of KATP, a sustained rise in [Ca2+]i, and an increase in insulin secretion 6-fold the magnitude of that induced by glucose. These results indicate that ATP derived from mitochondrial pyruvate metabolism does not substantially contribute to the regulation of KATP responses to a glucose challenge, supporting the notion of subcompartmentation of ATP within the beta-cell. Supranormal stimulation of the Krebs cycle by methyl pyruvate can, however, overwhelm intracellular partitioning of ATP and thereby drive insulin secretion.  相似文献   

7.
8.
Leptin receptors are expressed in pancreatic beta-cells. However, leptin's role in islet hormone secretion is essentially unknown. In the present study, we aimed to elucidate leptin's effect on isolated pancreatic NMRI mouse islets by examining islet amyloid polypeptide (IAPP) and insulin secretion in acute experiments and after 48-hr exposure to leptin (1-100 nM). It was also examined whether a putative effect of leptin was affected by the glucose concentration. Islets were cultured in medium RPMI 1640 + 10% fetal calf serum, and the effects of leptin on islet cell replication, glucose metabolism, and hormone content were subsequently examined. Glucose-stimulated IAPP secretion was reduced both acutely and after 48-hr exposure to leptin, whereas only minor effects were found on insulin release, i.e. an inhibition in islets cultured with 1 nM leptin. An acute inhibitory effect by 10 nM leptin was observed on the ratio of IAPP/insulin release at 5.6-11.1 mM glucose, but this was overcome by 16.7 mM glucose. The islet glucose oxidation rate was enhanced by 1 nM leptin, but decreased at higher concentrations of leptin in acute experiments. In contrast, glucose metabolism was not affected in long-term experiments. Moreover, leptin did not influence islet (pro)insulin synthesis or the cell replication rate after culture. In conclusion, we show that islet IAPP release seems to be more sensitive to leptin than is insulin release. The effect of leptin on islet hormone secretion is dependent on the glucose concentration. The regulation of hormone secretion seems to be dissociated from glucose metabolism, an effect previously described in islets after exposure to certain cytokines. Our data necessarily suggest that a previously proposed negative feedback loop between leptin and insulin can be counteracted by IAPP.  相似文献   

9.
The effects of leptin on insulin secretion from pancreatic islets of Sprague-Dawley rats were examined in vitro. In a basal glucose medium (5.5 mM), insulin secretion from isolated islets was significantly decreased after addition of a recombinant leptin (80 nM) (3.20+/-0.14 nmol/10 islets/h) compared with that before the addition (4.41+/-0.30 nmol/10 islets/h). Although significant leptin suppression of insulin secretion was not observed under a glucose-stimulated (11.1 mM) condition, these results suggest that a negative feedback system may exist between leptin and insulin, which increases the production of leptin from adipose tissues.  相似文献   

10.
5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) is taken up by perfused skeletal muscle and phosphorylated to form 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuraosyl-5'-monopho sph ate (analog of 5'-AMP) with consequent activation of AMP-activated protein kinase, phosphorylation of acetyl-CoA carboxylase, decrease in malonyl-CoA, and increase in fatty acid oxidation. This study was designed to determine the effect of increasing levels of palmitate on the rate of fatty acid oxidation. Malonyl-CoA concentration was manipulated with AICAR at different palmitate concentrations. Rat hindlimbs were perfused with Krebs-Henseleit bicarbonate containing 4% bovine serum albumin, washed bovine red cells, 200 microU/ml insulin, 10 mM glucose, and different concentrations of palmitate (0. 1-1.0 mM) without or with AICAR (2.0 mM). Perfusion with medium containing AICAR was found to activate AMP-activated protein kinase in skeletal muscle, inactivate acetyl-CoA carboxylase, and decrease malonyl-CoA at all concentrations of palmitate. The rate of palmitate oxidation increased as a function of palmitate concentration in both the presence and absence of AICAR but was always higher in the presence of AICAR. These results provide additional evidence that malonyl-CoA is an important regulator of the rate of fatty acid oxidation at palmitate concentrations in the physiological range.  相似文献   

11.
Treatment of streptozotocin (ST), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) resulted in destroying insulin-secreting beta-cells of pancreatic islets and impairment of islet glucose oxidation and glucose-induced insulin secretion. IL-1beta and TNF-alpha inhibited insulin release and glucose utilization and oxidation. It was shown that the inhibitory effects of ST, IL-1beta, and TNF-alpha were due to impaired glucokinase activity. Glucokinase activity was severely impaired by ST, IL-1beta, and TNF-alpha treatments, as confirmed by assaying enzymes and nucleotides associated with glycolysis and glucose oxidation. On the other hand, nitric oxide was a factor of the deleterious effects of IL-1beta, TNF-alpha, and ST on pancreatic islets. Incubation of mouse pancreatic islets with ST at various concentrations of impairing insulin secretion resulted in generation of nitrite, stimulation of islet guanylyl cyclase and accumulation of cGMP, and inhibition of pancreatic islet mitochondrial aconitase activity to degree similar to those raised by IL-1beta and TNF-alpha. When the effects of IL-1beta and TNF-alpha on the gene expression of pancreatic GLUT2 and glucokinase were examined, the level of GLUT2 and glucokinase mRNA in pancreatic islets was significantly decreased. This suggested that IL-1beta and TNF-alpha downregulate gene expression of GLUT2 and glucokinase in pancreatic beta-cells.  相似文献   

12.
13.
Mouse pancreatic islet grafts under the kidney capsule of syngeneic hosts were removed and perifused in vitro 1-40 weeks after the transplantation. In comparison with fresh islets, 12- to 40-week-old grafts exhibited an attenuated first phase of glucose-stimulated insulin release. In grafts 1, 12, 28, or 40 weeks old, but not in fresh islets, the mean secretory rate during the initial 10 min of stimulation was significantly lower than that during the subsequent 15 min. When expressed in relation to insulin content, the insulin output in response to 11 mmol/L glucose was no less from grafts than from fresh islets; in grafts 12 or 40 weeks old at 16.7 mmol/L glucose, the fractional output above baseline was significantly diminished during the initial 10 min, but not subsequently. Immediately on switching from basal to stimulatory glucose concentration, there was a transient drop in insulin secretion from the grafts, especially after more than 12 weeks of transplantation and in response to 16.7, as compared with 11, mmol/L glucose. When glucose was switched back from stimulatory to basal concentration, grafts also frequently exhibited a transient increase in the insulin secretory rate. Neither initial drops nor "off responses" were seen in untransplanted islets. The modifications of the secretory dynamics in islet grafts suggest that transplantation influences the balance between the stimulatory and inhibitory influences of glucose on the beta-cell's secretory machinery.  相似文献   

14.
The Ca2+/calmodulin dependent protein kinase II (CaM kinase II) is thought to play an important part in glucose-stimulated insulin secretion. To determine which of the known subtypes (alpha, beta, gamma, delta) occur in insulin-secreting cells, we amplified all types of CaM kinase II by RT-PCR and found the beta3-, gamma-, delta2- and delta6-subtypes in RINm5F insulinoma cells. None of the other 8 delta-subtypes was present. Antibodies generated against the bacterially expressed association domain of the delta2-subtype recognized the recombinant gamma and delta-subtypes. In INS-1 and RINm5F cells, as well as freshly isolated rat islets, only a 55-kDa protein corresponding in size to the delta2-subtype expressed in NIH3T3 fibroblasts was detected. The delta2-subtype therefore appears to represent the predominant subtype of CaM kinase II present in insulin secreting cells. The enzyme was primarily associated with cytoskeletal structures, and very little was present in the soluble compartment or detergent soluble fraction in INS-1- or RINm5F-cells. An analysis of its subcellular distribution was performed by sucrose and Nycodenz density gradient fractionation of INS-1 cells and detection of CaM kinase II delta by immune blots. The enzyme codistributed with insulin used as a marker for secretory granules but not with the lighter synaptic-like microvesicles detected with an antibody against synaptophysin, plasma membranes (syntaxin 1), lysosomes (arylsulfatase), or mitochondria (cytochrome c oxidase). CaM kinase II delta2 thus is identified as the subtype associated with insulin secretory granules and is likely to be involved in insulin secretion.  相似文献   

15.
16.
Glucokinase catalyzes a rate-limiting step in glucose metabolism in hepatocytes and pancreatic beta cells and is considered the "glucose sensor" for regulation of insulin secretion. Patients with maturity-onset diabetes of the young (MODY) have heterozygous point mutations in the glucokinase gene that result in reduced enzymatic activity and decreased insulin secretion. However, it remains unclear whether abnormal liver glucose metabolism contributes to the MODY disease. Here we show that disruption of the glucokinase gene results in a phenotype similar to MODY in heterozygous mice. Reduced islet glucokinase activity causes mildly elevated fasting blood glucose levels. Hyperglycemic clamp studies reveal decreased glucose tolerance and abnormal liver glucose metabolism. These findings demonstrate a key role for glucokinase in glucose homeostasis and implicate both islets and liver in the MODY disease.  相似文献   

17.
Previous work suggested that glucagon-like peptide 1 (GLP-1) can acutely regulate insulin secretion in two ways, 1) by acting as an incretin, causing amplification of glucose-induced insulin release when glucose is given orally as opposed to intravenous glucose injection; and 2) by keeping the beta-cell population in a glucose-competent state. The observation that mice with homozygous disruption of the GLP-1 receptor gene are diabetic with a diminished incretin response to glucose underlines the first function in vivo. Isolated islets of Langerhans from GLP-1 receptor -/- mice were studied to assess the second function in vitro. Absence of pancreatic GLP-1 receptor function was observed in GLP-1 receptor -/- mice, as exemplified by loss of [125I]GLP-1 binding to pancreatic islets in situ and by the lack of GLP-1 potentiation of glucose-induced insulin secretion from perifused islets. Acute glucose competence of the beta-cells, assessed by perifusing islets with stepwise increases of the medium glucose concentration, was well preserved in GLP-1 receptor -/- islets in terms of insulin secretion. Furthermore, neither islet nor total pancreatic insulin content was significantly changed in the GLP-1 receptor -/- mice when compared with age-and sex-matched controls. In conclusion, mouse islets exhibit preserved insulin storage capacity and glucose-dependent insulin secretion despite the loss of functional GLP-1 receptors. The results demonstrate that the glucose responsiveness of islet beta-cells is well preserved in the absence of GLP-1 receptor signaling.  相似文献   

18.
19.
We studied the effects of fatty acid oxidation on insulin secretion of db/db mice and underlying molecular mechanisms of these effects. At 2-3 months of age, db/db mice were markedly obese, hyperglycemic, and hyperinsulinemic. Serum free fatty acid (FFA) levels were increased in 2-month-old (1.5 +/- 0.1 vs. 1.1 +/- 0.1 mmol/l, P < 0.05) and 3-month-old (1.9 +/- 0.1 vs. 1.2 +/- 0.1 mmol/l, P < 0.01) mice compared with the age and sex-matched db/+ mice serving as controls. Glucose-induced insulin release from db/db islets was markedly decreased compared with that from db/+ islets and was specifically ameliorated (by 54% in 2-month-old and 38% in 3-month-old mice) by exposure to a carnitine palmitoyltransferase I inhibitor, etomoxir (1 micromol/l). Etomoxir failed to affect the insulin response to alpha-ketoisocaproate. The effect of etomoxir on glucose-induced insulin release was lost after culturing db/db islets in RPMI medium containing 22 mmol/l glucose but no fatty acid. Culture of db/+ islets with 0.125 mmol/l palmitate led to a decrease in glucose-induced insulin secretion, which was partially reversible by etomoxir. Both islet glucose oxidation and the ratio of glucose oxidation to utilization were decreased in db/db islets. Etomoxir significantly enhanced glucose oxidation by 60% and also the ratio of oxidation to glucose utilization (from 27 +/- 2.5 to 37 +/-3.0%, P < 0.05). Pyruvate dehydrogenase (PDH) activity was decreased in islets of db/db mice (75 +/-4.2 vs. 91 +/- 2.9 nU/ng DNA, P < 0.01), whereas PDH kinase activity was increased (rate of PDH inactivation -0.25 +/- 0.02 vs. - 0.11 +/- 0.02/min, P < 0.0 1). These abnormalities were partly but not wholly reversed by a 2-h preexposure to etomoxir. In conclusion, elevated FFA levels in the db/db mouse diminish glucose-induced insulin secretion by a glucose-fatty acid cycle in which fatty acid oxidation inhibits glucose oxidation by decreasing PDH activity and increasing PDH kinase activities.  相似文献   

20.
Hypersecretion of insulin from the pancreas is among the earliest detectable metabolic alterations in some genetically obese animals including the ob/ob mouse and in some obesity-prone humans. Since the primary cause of obesity in the ob/ob mouse is a lack of leptin due to a mutation in the ob gene, we tested the hypothesis that leptin targets a regulatory pathway in pancreatic islets to prevent hypersecretion of insulin. Insulin secretion is regulated by changes in blood glucose, as well as by peptides from the gastrointestinal tract and neurotransmitters that activate the pancreatic islet adenylyl cyclase (e.g., glucagon-like peptide-1) and phospholipase C (PLC) (e.g., acetylcholine) signaling pathways to further potentiate glucose-induced insulin secretion. Effects of leptin on each of these regulatory pathways were thus examined. Leptin did not influence glucose or glucagon-like peptide-1-induced insulin secretion from islets of either ob/ob or lean mice, consistent with earlier findings that these regulatory pathways do not contribute to the early-onset hypersecretion of insulin from islets of ob/ob mice. However, leptin did constrain the enhanced PLC- mediated insulin secretion characteristic of islets from ob/ob mice, without influencing release from islets of lean mice. A specific enhancement in PLC-mediated insulin secretion is the earliest reported developmental alteration in insulin secretion from islets of ob/ob mice, and thus a logical target for leptin action. This action of leptin on PLC-mediated insulin secretion was dose-dependent, rapid-onset (i.e., within 3 min), and reversible. Leptin was equally effective in constraining the enhanced insulin release from islets of ob/ob mice caused by protein kinase C (PKC) activation, a downstream mediator of the PLC signal pathway. One function of leptin in control of body composition is thus to target a PKC-regulated component of the PLC-PKC signaling system within islets to prevent hypersecretion of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号