首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical properties and current transport mechanisms of Au/BaTiO3 (BTO)/n-GaN metal–insulator–semiconductor (MIS) structures have been investigated by current–voltage (IV) and capacitance–voltage (CV) measurements at room temperature. Experimental results reveal that the MIS structure has a higher rectification ratio with low reverse leakage current compared with the Au/n-GaN metal–semiconductor (MS) structure. The calculated barrier height of the Au/BTO/n-GaN MIS structure [0.87 eV (IV)/1.02 eV (CV)] increases compared with the Au/n-GaN MS structure [0.73 eV (IV)/0.96 eV (CV)]. The series resistance is extracted using Cheung’s functions, and the values are in good agreement with each other. Furthermore, the energy distribution of the interface state density is estimated from the forward-bias IV data. It is noteworthy that the interface state density of the MIS structure is lower than that of the MS structure. In both MS and MIS structures under forward-bias conditions, ohmic and space-charge-limited conduction mechanisms are identified at lower and higher voltages, respectively. Investigations reveal that Poole–Frenkel emission dominates the reverse leakage current in both Au/n-GaN and Au/BTO/n-GaN structures.  相似文献   

2.
Au and Cu impurity effects on the capacitance-voltage (CV) relationship of Pt-n type Si Schottky barrier diodes have been investigated over the frequency range of 100 Hz to 500 kHz at 200°K and 300°K. The barrier height of the Pt-Si system measured by CV, IV, and photothreshold techniques was 0.83±0.01 eV. Deep level CV effects previously predicted by Roberts and Crowell were observed. Diodes on phosphorus-doped Si nearly compensated with Au clearly exhibited a non-monotonic low frequency CV relationship. An inflection point in the C?2-V curve attributable to the Au donor level 0.77 eV from the conduction band edge was observed. The experimental data show that the presence of deep levels makes barrier height measurements appreciably ambiguous and that impurity profiles determined from a CV relationship using a model which neglects their presence can be shifted appreciably both in apparent magnitude and apparent position.  相似文献   

3.
We present an analysis of Schottky barriers in n-InP made by incorporating a thin native oxide. An oxidation technique using nitric acid under illumination produces an oxide layer with uniform composition distribution within the layer. The growth rate is interpreted as being partially limited by diffusion presumably of oxygen through oxide. The Au Schottky barrier formed on a 40–80 Å thick oxide layer exhibits little degradation of the ideality factor n (1.04 < n < 1.10) and an increase of the barrier height by greater than 0.3 eV, resulting in at least a 10?4 times smaller reverse leakage current density, compared with conventional Au-InP barriers. The barrier height increase is analysed by a generalised model, and is found to be produced by the existence of fixed negative charges in the oxide layer. From the present analysis, a surface state density of 6.0 × 1012 cm?2 eV?1 and an equivalent surface density of negative charges of 2.8 × 1012 cm?2 are determined independently. The origins of these, particularly of the surface states, are considered in relation to the P vacancies at the oxide-InP interface.  相似文献   

4.
We have studied the experimental linear relationship between barrier heights and ideality factors for palladium (Pd) on bulk-grown (1 1 1) Sb-doped n-type germanium (Ge) metal-semiconductor structures with a doping density of about 2.5×1015 cm?3. The Pd Schottky contacts were fabricated by vacuum resistive evaporation. The electrical analysis of the contacts was investigated by means of current–voltage (IV) and capacitance–voltage (CV) measurements at a temperature of 296 K. The effective barrier heights from IV characteristics varied from 0.492 to 0.550 eV, the ideality factor n varied from 1.140 to 1.950, and from reverse bias capacitance–voltage (C?2V) characteristics the barrier height varied from 0.427 to 0.509 eV. The lateral homogenous barrier height value of 0.558 eV for the contacts was obtained from the linear relationship between experimental barrier heights and ideality factors. Furthermore the experimental barrier height distribution obtained from IV and (C?2?V) characteristics were fitted by Gaussian distribution function, and their mean values were found to be 0.529 and 0.463 eV, respectively.  相似文献   

5.
The electrical analysis of Ni/n-GaP structure has been investigated by means of current–voltage (IV), capacitance–voltage (CV) and capacitance–frequency (Cf) measurements in the temperature range of 120–320 K in dark conditions. The forward bias IV characteristics have been analyzed on the basis of standard thermionic emission (TE) theory and the characteristic parameters of the Schottky contacts (SCs) such as Schottky barrier height (SBH), ideality factor (n) and series resistance (Rs) have been determined from the IV measurements. The experimental values of SBH and n for the device ranged from 1.01 eV and 1.27 (at 320 K) to 0.38 eV and 5.93 (at 120 K) for Ni/n-GaP diode, respectively. The interface states in the semiconductor bandgap and their relaxation time have been determined from the Cf characteristics. The interface state density Nss has ranged from 2.08 × 1015 (eV?1 m?2) at 120 K to 2.7 × 1015 (eV?1 m?2) at 320 K. Css has increased with increasing temperature. The relaxation time has ranged from 4.7 × 10?7 s at 120 K to 5.15 × 10?7 s at 320 K.  相似文献   

6.
We have investigated the structural and electrical characteristics of the Ag/n-TiO2/p-Si/Al heterostructure. Thin films of pure TiO2 were deposited on p-type silicon (100) by optimized pulsed laser ablation with a KrF-excimer laser in an oxygen-controlled environment. X-ray diffraction analysis showed the formation of crystalline TiO2 film having a tetragonal texture with a strong (210) plane as the preferred direction. High purity aluminium and silver metals were deposited to obtain ohmic contacts on p-Si and n-TiO2, respectively. The current–voltage (IV) characteristics of the fabricated heterostructure were studied by using thermionic emission diffusion mechanism over the temperature range of 80–300 K. Parameters such as barrier height and ideality factor were derived from the measured IV data of the heterostructure. The detailed analysis of IV measurements revealed good rectifying behavior in the inhomogeneous Ag/n-TiO2/p-Si(100)/Al heterostructure. The variations of barrier height and ideality factor with temperature and the non-linearity of the activation energy plot confirmed that barrier heights at the interface follow Gaussian distributions. The value of Richardson’s constant was found to be 6.73 × 105 Am?2 K?2, which is of the order of the theoretical value 3.2 × 105 Am?2 K?2. The capacitance–voltage (CV) measurements of the heterostructure were investigated as a function of temperature. The frequency dependence (Mott–Schottky plot) of the CV characteristics was also studied. These measurements indicate the occurrence of a built-in barrier and impurity concentration in TiO2 film. The optical studies were also performed using a UV–Vis spectrophotometer. The optical band gap energy of TiO2 films was found to be 3.60 eV.  相似文献   

7.
Schottky contacts were fabricated on n-type GaN using a Cu/Au metallization scheme, and the electrical and structural properties have been investigated as a function of annealing temperature by current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES) and X-ray diffraction (XRD) measurements. The extracted Schottky barrier height of the as-deposited contact was found to be 0.69 eV (I-V) and 0.77 eV (C-V), respectively. However, the Schottky barrier height of the Cu/Au contact slightly increases to 0.77 eV (I-V) and 1.18 eV (C-V) when the contact was annealed at 300 °C for 1 min. It is shown that the Schottky barrier height decreases to 0.73 eV (I-V) and 0.99 eV (C-V), 0.56 eV (I-V) and 0.87 eV (C-V) after annealing at 400 °C and 500 °C for 1 min in N2 atmosphere. Norde method was also used to extract the barrier height of Cu/Au contacts and the values are 0.69 eV for the as-deposited, 0.76 eV at 300 °C, 0.71 eV at 400 °C and 0.56 eV at 500 °C which are in good agreement with those obtained by the I-V method. Based on Auger electron spectroscopy and X-ray diffraction results, the formation of nitride phases at the Cu/Au/n-GaN interface could be the reason for the degradation of Schottky barrier height upon annealing at 500 °C.  相似文献   

8.
The forward and reverse current density-voltage (J-V) and capacitance-voltage (C-V) characteristics of pentacene/n-silicon heterojunction diodes were investigated to clarify the carrier conduction mechanism at the organic/inorganic heterojunction. Current rectification characteristics of the pentacene/n-Si junctions can be explained by a Schottky diode model with an interfacial layer. The diode parameters such as Schottky barrier height and ideality factor were estimated to be 0.79-1.0 eV and 2.4-2.7, respectively. The C-V analysis suggests that the depletion layer appears selectively in the n-Si layer with a thickness of 1.47 μm from the junction with zero bias and the diffusion potential was estimated at 0.30 eV at the open-circuit condition. The present heterojunction allows the photovoltaic operation with power conversion efficiencies up to 0.044% with a simulated solar light exposure of 100 mW/cm2.  相似文献   

9.
The capacitance–voltage–temperature (CVT) and the conductance/angular frequency–voltage–temperature (G/ω–VT) characteristics of Au/TiO2(rutile)/n-Si Schottky barrier diodes (SBDs) were investigated over the temperature range from 200 K to 380 K by considering the series resistance effect. Titanium dioxide (TiO2) was deposited on n-type silicon (Si) substrate using a direct-current (DC) magnetron sputtering system at 200°C. To improve the crystal quality, the deposited film was annealed at 900°C to promote a phase transition from the amorphous to rutile phase. The C ?2 versus V plots gave a straight line in the reverse-bias region. The main electrical parameters, such as the doping concentration (N D), Fermi energy level (E F), depletion layer width (W D), barrier height (ф CV), and series resistance (R S), of Au/TiO2(rutile)/n-Si SBDs were calculated from the CVT and the G/ω–VT characteristics. The obtained results show that ф CV, R S, and W D values decrease, while E F and N D values increase, with increasing temperature.  相似文献   

10.
To achieve high performance Ge nMOSFETs it is necessary to reduce the metal/semiconductor Schottky barrier heights at the source and drain. Ni/Ge and NiGe/Ge Schottky barriers are fabricated by electrodeposition using n-type Ge substrates. Current (I)–voltage (V) and capacitance (C)–voltage (V) and low temperature IV measurements are presented. A high-quality Schottky barrier with extremely low reverse leakage current is revealed. The results are shown to fit an inhomogeneous barrier model for thermionic emission over a Schottky barrier. A mean value of 0.57 eV and a standard deviation of 52 meV is obtained for the Schottky barrier height at room temperature. A likely explanation for the distribution of the Schottky barrier height is the spatial variation of the metal induced gap states at the Ge surface due to a variation in interfacial oxide thickness, which de-pins the Fermi level.  相似文献   

11.
We have fabricated two types of Schottky barrier(SBDs),Au/SnO2/n-Si (MIS1) and Al/SnO2/p-Si (MIS2), to investigate the surface (Nss) and series resistance (Rs) effect on main electrical parameters such as zero-bias barrier height (ΦBo) and ideality factor (n) for these SBDs. The forward and reverse bias current–voltage (IV) characteristics of them were measured at 200 and 295 K, and experimental results were compared with each other. At temperatures of 200 and 295 K, ΦBo, n, Nss and Rs for MIS1 Schottky diodes (SDs) ranged from 0.393 to 0.585 eV, 5.70 to 4.75, 5.42×1013 to 4.27×1013 eV?1 cm?2 and 514 to 388 Ω, respectively, whereas for MIS2 they ranged from 0.377 to 0.556 eV, 3.58 to 2.1, 1.25×1014 to 3.30×1014 eV?1 cm?2 and 312 to 290 Ω, respectively. The values of n for two types of SBDs are rather than unity and this behavior has been attributed to the particular distribution of Nss and interfacial insulator layer at the metal/semiconductor interface. In addition, the temperature dependence energy density distribution profiles of Nss for both MIS1 and MIS2 SBDs were obtained from the forward bias IV characteristics by taking into account the bias dependence of effective barrier height (Φe) and Rs. Experimental results show that both Nss and Rs values should be taken into account in the forward bias IV characteristics. It has been concluded that the p-type SBD (MIS2) shows a lower barrier height (BH), lower Rs, n and Nss compared to n-type SBD (MIS1), which results in higher current at both 200 and 295 K.  相似文献   

12.
The interface properties of a Au/n-GaN Schottky junction (SJ) were modified by placing a high-k barium strontium titanate (Ba0.6Sr0.4TiO3) insulating layer between the Au and n-GaN semiconductor. The surface morphology, chemical composition, and electrical properties of Au/Ba0.6Sr0.4TiO3 (BST)/n-GaN metal/insulator/semiconductor (MIS) junctions were explored by atomic force microscopy, energy-dispersive x-ray spectroscopy, current–voltage (IV) and capacitance–voltage (CV) techniques. The electrical results of the MIS junction are correlated with the SJ and discussed further. The MIS junction exhibited an exquisite rectifying nature compared to the SJ. An average barrier height (BH) and ideality factors were extracted to be 0.77 eV, 1.62 eV and 0.92 eV, 1.95 for the SJ and MIS junction, respectively. The barrier was raised by 150 meV for the MIS junction compared to the MS junction, implying that the BH was effectively altered by the BST insulating layer. The BH values extracted by IV, Cheung’s and Norde functions were nearly equal to one another, indicating that the techniques applied here were dependable and suitable. The frequency-dependent properties of the SJ and MIS junction were explored and discussed. It was found that the interface state density of the MIS junction was smaller than the SJ. This implies that the BST layer plays an imperative role in the decreased NSS. Poole–Frenkel emission was the prevailed current conduction mechanism in the reverse-bias of both the SJ and MIS junction.  相似文献   

13.
All RF sputtering-deposited Pt/SiO2/n-type indium gallium nitride (n-InGaN) metal–oxide–semiconductor (MOS) diodes were investigated before and after annealing at 400 °C. By scanning electron microscopy (SEM), the thickness of Pt, SiO2, n-InGaN layer was measured to be ~250, 70, and 800 nm, respectively. AFM results also show that the grains become a little bigger after annealing, the surface topography of the as-deposited film was smoother with the rms roughness of 1.67 nm and had the slight increase of 1.92 nm for annealed sample. Electrical properties of MOS diodes have been determined by using the current–voltage (IV) and capacitance–voltage (CV) measurements. The results showed that Schottky barrier height (SBH) increased slightly to 0.69 eV (IV) and 0.82 eV (CV) after annealing at 400 °C for 15 min in N2 ambient, compared to that of 0.67 eV (IV) and 0.79 eV (CV) for the as-deposited sample. There was the considerable improvement in the leakage current, dropped from 6.5×10−7 A for the as-deposited to 1.4×10−7 A for the 400 °C-annealed one. The annealed MOS Schottky diode had shown the higher SBH, lower leakage current, smaller ideality factor (n), and denser microstructure. In addition to the SBH, n, and series resistance (Rs) determined by Cheungs׳ and Norde methods, other parameters for MOS diodes tested at room temperature were also calculated by CV measurement.  相似文献   

14.
The ohmic contact formation mechanism and the role of Pt layer of Au(500Å) Pt(500Å)/Pd(100Å) ohmic contact to p-ZnTe were investigated. The specific contact resistance of Au/Pt/Pd contact depended strongly on the annealing temperature. As the annealing temperature increased, the specific contact resistance decreased and reached a minimum value of 6×10?6 Θcm2 at 200°C. From the Hall measurement, the hole concentration increased with the annealing temperature and reached a maximum value of 2.3×1019 cm?3 at 300°C. The Schottky barrier height decreased with the increase of annealing temperature and reached a minimum value of 0.34 eV at 200°C and it was due to the interfacial reaction of Pd and ZnTe. Therefore, the decrease of contact resistance was due to the increase of doping concentration as well as the decrease of Schottky barrier height by the interfacial reaction of Pd ZnTe. The specific contact resistances of Au Pd, Au/Pt/Pd and Au/Mo/Pd as a function of annealing time was investigated to clarify the role of Pt layer.  相似文献   

15.
A method for determining the surface state density in Schottky diodes taking into account both I–V and C–V data while considering the presence of a deep donor level is presented. The model assumes that the barrier height is controlled by the energy distribution of surface states in equilibrium with the metal and the applied potential and does not include, explicitly, an interfacial layer. The model was applied to extract interface state densities of Au-nGaAs guarded Schottky diodes fabricated from bulk and VPE (100) GaAs with carrier conentrations between 3 × 1015 and 8 × 1016 cm?3. These diodes exhibited ideality (n) factors of approximately 1.02 and room temperature saturation current densities ~10?8 A/cm2. This model is in substantial agreement with forward bias measurements over the 77–360°K temperature range investigated, in that a temperature-independent energy distribution of interface states was obtained. In reverse bias the interface state model is most valid with the higher carrier concentration material and at high temperature and low bias voltage. Typical interface state densities from 0.07 eV above the zero bias Fermi level to 0.01 eV below the Fermi level were 2 × 1013 cm?2 eV?1. The validity of the model under reverse bias is restricted by a non-thermionic reverse current, thought to be enhance field emission from traps.  相似文献   

16.
Characteristics of An/n-InP Schottky junctions formed onn-InP treated with hydrogen (H2)-and phosphine (PH3)-plasmas have been investigated. An enhancement of the barrier height up to 0.7 eV or more is observed for Schottky junctions processed sequentially with plasma treatment, laboratory air oxidation and Au evaporation. From the measurement of Schottky junctions formed by in-situ metallization immediately after H2-plasma treatment, it is found that laboratory air oxidation permits an increase in the barrier height by about 0.1 eV. The annealing experiment of Schottky junctions treated with plasma reveals that the substantial part of the barrier height enhancement is caused by release of the Fermi level pinning due to hydrogen passivation of surface defects. Although both H2- and PH3-plasmas are effective in enhancing the barrier height, PH3-plasma is preferable in respect to minimizing plasma-induced damage. In the case of H2-plasma treatment deep electron traps with activation energies of 0.21 and 0.51 eV below the conduction band are generated at and/or near the surface of InP, while these traps are not detected after PH3-plasma treatment.  相似文献   

17.
We report here the first systematic study of the electronic properties of Al, Au, Ag and Cu Schottky barrier diodes on n-type GaAs. These diodes were formed on cleaved (110) surfaces in ultra-high vacuum (UHV) using similar conditions and evaporation rates during the initial stages of Schottky barrier formation as in the photoemission spectroscopy (PES) studies. Barrier height determinations using device measuring techniques (current-voltage (IV), capacitive-voltage (C–-V) and internal photoemission) are compared with the results from the PES studies. Essentially identical barrier heights are found from PES and the electrical measurements for the noble metals. The barrier height of the noble metal: n-GaAs system (0.9 eV) is larger than any simple metal on n-type GaAs previously reported. This is examined in light of recent work by Zur, McGill and Smith [22] and a model is suggested to explain it. Results of this study are found to be consistent with the unified defect model which has hypothesized that the barrier height is established by the energy levels of structural defects formed at the surface during the metal deposition.  相似文献   

18.
We have fabricated Au/n-Si and Au/PVA:Zn/n-Si Schottky barrier diodes (SBDs) to investigate the effect of organic interfacial layer on the main electrical characteristics. Zn doped poly(vinyl alcohol) (PVA:Zn) was successfully deposited on n-Si substrate by using the electrospinning system and surface morphology of PVA:Zn was presented by SEM images. The current–voltage (I–V) characteristics of these SBDs have been investigated at room temperature. The experimental results show that interfacial layer enhances the device performance in terms of ideality factor (n), zero-bias barrier height (ΦB0), series resistance (Rs), and shunt resistance (Rsh) with values of 1.38, 0.75 eV, 97.64 Ω, and 203 MΩ whereas those of Au/n-Si SBD are found as 1.65, 0.62 eV, 164.15 Ω and 0.597 MΩ, respectively. Also, this interfacial layer at metal/semiconductor (M/S) interface leads to a decrease in the magnitude of leakage current and density of interface states (Nss). The values of Nss range from 1.36×1012 at Ec—0.569 eV to 1.35×1013 eV?1 cm?2 at Ec—0.387 eV for Au/PVA:Zn/n-Si SBD and 3.34×1012 at Ec—0.560 eV to 1.35×1013 eV?1 cm?2 at Ec—0.424 eV for Au/n-Si SBD. The analysis of experimental results reveals that the existence of PVA:Zn interfacial layer improves the performance of such devices.  相似文献   

19.
The temperature-dependent electrical characteristics of the Au/n-Si Schottky diodes have been studied in the temperature range of 40-300 K. Current density-voltage (J-V) characteristics of these diodes have been analyzed on the basis of thermionic emission theory with Gaussian distribution model of barrier height. The basic diode parameters such as rectification ratio, ideality factor and barrier height were extracted. Under a reverse bias, the conduction process at low voltage is determined by Schottky emission over a potential barrier but at higher voltage the Poole Frenkel effect is observed. The capacitance-voltage (C-V) features of the Au/n-Si Schottky diodes were characterized in the high frequency of 1 MHz. The barrier heights values obtained from the J-V and C-V characteristics have been compared. It has been seen that the barrier height value obtained from the C-V measurements is higher than that obtained from the J-V measurements at various temperatures. Possible explanations for this discrepancy are presented. Deep level transient spectroscopy (DLTS) has been used to investigate deep levels in Au/n-Si. Three electron trap centers, having different emission rates and activation energies, have been observed. It is argued that the origin of these defects is of intrinsic nature. A correlation between C-V and DLTS measurements is investigated.  相似文献   

20.
The I–V and C-V data of Schottky devices formed on electrodeposited n-CdTe films are interpreted to determine the principle trap energy and density. The observed trap is an electron trap located at 0.55 eV below the conduction band with a density of ~7 × 1015/cm3. This correlates well with the values reported for CdTe prepared by different methods. Nickel is found to be an injecting contact to electrodeposited CdTe films. Au/n-CdTe barrier height is determined to be 0.75–0.85 eV for Schottky devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号