共查询到3条相似文献,搜索用时 0 毫秒
1.
2.
《Virtual and Physical Prototyping》2013,8(3):103-122
ABSTRACTAdditive manufacturing (AM), commonly known as three-dimensional (3D) printing or rapid prototyping, has been introduced since the late 1980s. Although a considerable amount of progress has been made in this field, there is still a lot of research work to be done in order to overcome the various challenges remained. Recently, one of the actively researched areas lies in the additive manufacturing of smart materials and structures. Smart materials are those materials that have the ability to change their shape or properties under the influence of external stimuli. With the introduction of smart materials, the AM-fabricated components are able to alter their shape or properties over time (the 4th dimension) as a response to the applied external stimuli. Hence, this gives rise to a new term called ‘4D printing’ to include the structural reconfiguration over time. In this paper, recent major progresses in 4D printing are reviewed, including 3D printing of enhanced smart nanocomposites, shape memory alloys, shape memory polymers, actuators for soft robotics, self-evolving structures, anti-counterfeiting system, active origami and controlled sequential folding, and some results from our ongoing research. In addition, some research activities on 4D bio-printing are included, followed by discussions on the challenges, applications, research directions and future trends of 4D printing. 相似文献
3.
Metals, ceramics, polymers, and composites have been employed in joint arthroplasty with ever increasing success since the 1960s. New materials to repair or replace human skeletal joints (e.g. hip, knee, shoulder, ankle, fingers) are being introduced as materials scientists and engineers develop better understanding of the limitations of current joint replacement technologies. Advances in the processing and properties of all classes of materials are providing superior solutions for human health. However, as the average age of patients for joint replacement surgery decreases and the average lifespans of men and women increases worldwide, the demands upon the joint materials are growing. This article focuses solely on advances in metals, highlighting the current and emerging technologies in metals processing, metal surface treatment, and integration of metals into hybrid materials systems. The needed improvements in key properties such as wear, corrosion, and fatigue resistance are discussed in terms of the enhanced microstructures that can be achieved through advanced surface and bulk metal treatments. Finally, far reaching horizons in metals science that may further increase the effectiveness of total joint replacement solutions are outlined. 相似文献