首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
锂离子电池高镍Li Ni_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM,x≥0.6)正极材料因具有较高的能量密度和低成本等优势在电池领域备受关注,然而随着镍含量的升高,材料锂镍混排严重且热稳定性下降,导致高镍三元材料的循环稳定性和安全性恶化。本研究针对高镍三元材料阳离子无序排列严重和循环稳定性差的问题,通过共沉淀法在前驱体合成过程中将Mg掺杂进入晶体,得到Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)(Mg1.0)活性材料,进一步利用液相法在材料表面包覆Al_(2)O_(3),成功制备Al_(2)O_(3)涂覆的Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)复合材料(Mg1.0@Al)。X射线衍射(XRD)结果表明,Mg掺杂能够有效扩大材料层间距,抑制阳离子混排;扫描电子显微镜(SEM)结合透射电子显微镜(TEM)结果表明,改性未对NCM811材料整体形貌造成影响,同时能够明显地观察到通过液相法在材料表面包覆的Al_(2)O_(3)涂层。电化学测试结果表明,镁铝协同改性可以稳定NCM811材料结构,减少阴极的界面极化,遏制材料与电解液发生副反应,使得材料表现出优越的电化学性能。Mg1.0@Al在1 C循环100次后表现出稳定的放电电压(ΔV=5.2 m V)、较低的电荷转移阻抗(R_(ct)=51.66Ω)和卓越的锂离子扩散系数(D_(Li)=4.05×10^(-14)cm^(2)/s)。同时,Mg1.0@Al材料在2.8~4.3V电压范围下,展现出卓越的循环性能和倍率性能:1 C下循环100次和400次后仍有188.58 m Ah/g和147.47 m Ah/g的放电比容量,容量保持率分别为95.18%和74.54%;5 C大倍率电流下,放电比容量高达146.3 m Ah/g。  相似文献   

2.
O3型层状氧化物正极材料NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)具有高比容量、低成本和环境友好性等优点,被认为是最有前途的钠离子电池正极材料之一,但在充放电过程中会发生一系列复杂的相变,导致电化学性能较差。本研究报道了一种协同改性方法,以同时提高NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的循环稳定性和倍率性能。通过将硼酸粉末和正极材料固相球磨混匀后低温煅烧,在NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料表面包覆纳米非金属氧化物B_(2)O_(3)。借助X射线衍射仪(XRD)、扫描电子显微技术(SEM)、透射电子显微镜(TEM)和电化学技术等测试手段,对比分析不同包覆量和原材料的形貌和电化学性能,筛选得到最优包覆量为2%(质量分数,余同)。该方法实现了B_(2)O_(3)的均匀包覆,并且没有改变NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的晶体结构。通过电化学性能测试表明2%B_(2)O_(3)包覆材料在1 C倍率下循环200圈容量保持率从78%提升至87%。同时,2%B_(2)O_(3)包覆材料的高倍率性能也得到了改善,10 C高倍率下放电比容量从75 mAh/g提升至99 mAh/g。结果表明,这是一种有效且可靠的表面改性策略,可以增强钠离子电池层状氧化物正极材料的电化学性能。  相似文献   

3.
正极材料作为锂离子电池的四大核心材料之一,是锂离子电池电化学性能的决定性因素。其中,富镍三元正极材料LiNixCoyMn1.x.yO2(NCM,x≥0.6)因其较高的比容量和卓越的倍率性能等优点被广泛关注,被认为是下一代锂离子电池中最具有发展潜力的正极材料之一。然而,富镍三元正极材料存在的循环稳定性差、热稳定性差以及安全性能低等缺点,限制了其在电动汽车和混合动力汽车等方面的大规模应用。因此,富镍三元正极材料NCM的研究对于完善当前锂离子电池体系有着重要的意义。随着材料制备方法的不断改进,富镍三元正极材料的电化学性能得到了显著的提高。本文综述了近年来富镍三元正极材料的研究进展,依据富镍三元正极材料NCM的晶体结构以及阳离子混排、循环稳定性差、材料表面残碱和表面副反应等失效机理方面展开,重点阐述了通过元素掺杂、表面包覆、掺杂包覆一体化、单晶化、构建核壳结构和浓度梯度的方法对其电化学性能的改善,并对富镍三元正极材料在锂离子电池的应用和未来的研究方向做出展望。  相似文献   

4.
锂离子电池用LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)正极,具有较高比容量和较低成本的优点,但是其在高电压长循环时正极界面极不稳定、安全性能亟待提高。虽然锂快离子导体Li1.2Ca0.1Zr1.9(PO4)3制备的陶瓷隔膜在很大程度上可以解决电池的安全性问题,但是与NCM811正极界面稳定性差。本工作通过在陶瓷隔膜中添加具有稳定界面功能的氟化锂(LiF)的方法来解决此问题。采用扫描电子显微镜(SEM)、热重分析(TGA)、差示扫描量热法(DSC)、机械拉伸强度、热收缩、吸液率、电化学阻抗谱(EIS)、线性扫描伏安法(LSV)和充放电测试等方法进行表征。结果表明,当LiF占涂覆无机陶瓷颗粒总质量的10%时,得到的陶瓷隔膜性能最佳:具有良好的离子传输性能(室温离子电导率提高至9.5×10^(-4)S/cm)和最佳的界面稳定性。隔膜组装的Li||LiNi_(0.8)Co_(0.1)Ni_(0.1)O_(2)扣式电池在3.0~4.35 V的高电压范围以0.3 C倍率循环400次后,放电比容量从195.2 mAh/g减少到119.9 mAh/g,保持初始容量的61.4%,而没有添加LiF的陶瓷隔膜电池仅为32.7%。含LiF的陶瓷隔膜提升电池循环稳定性的原因是形成了高质量的高压正极/电解质界面膜,稳定了正极与陶瓷隔膜的界面,使正极材料在高电压下仍能保持结构的稳定。因此,本工作制备的陶瓷隔膜为NCM811正极在高电压锂离子电池中的商业化应用提供了一种便捷方法。  相似文献   

5.
钠离子电池因其成本低廉、环境友好且与锂离子电池工作原理相似,在大规模储能领域极具应用潜力。作为决定电池能量密度的关键组成部分,O3型钠基层状过渡金属氧化物因高容量、合成简单等优势在众多正极材料中脱颖而出。然而,Na^(+)在O3结构中八面体位点间的迁移需克服较大的能垒,最终导致复杂反应相变的发生和容量快速衰减。因此,探究O3型正极材料电化学反应过程中Na^(+)脱嵌行为与结构演变的构效关系对开发高性能正极材料至关重要。本工作以O_(3)-NaNi_(0.4)Fe_(0.2)Mn_(0.4)O_(2)(O3-NFM)正极为研究对象,对其电化学性能、Na^(+)传输动力学性质及相变机制展开了系统研究。电化学测试结果表明,O3-NFM在充电至高压(4.3 V)时可脱出0.84 mol Na^(+),发挥约201.9 mAh/g的比容量,但可逆性欠佳。当截止电压为4.0 V时,该正极材料循环性能优异,原位XRD结果进一步证明了电化学反应过程中O3-P3/O3-P3-P3/O3-O3的可逆结构转变。循环伏安(CV)曲线和恒电流间歇滴定技术(GITT)结果表明其具有快速的钠离子扩散速率,从而表现出较好的倍率性能。本研究为探索以O3-NFM为基础的正极材料结构设计及性能调控提供了理论基础。  相似文献   

6.
力学失效是三元氧化物正极材料在高容量应用时面临的主要问题之一,本工作采用熔盐法和共沉淀法分别制备了单晶和多晶NMC811,通过XRD、FIB-SEM和应力分析等方法对比研究了单晶和多晶NMC811材料在电化学过程中的力学性能及其演化,建立了单晶及多晶NMC811在充放电过程中的裂纹萌生及扩展与应力应变之间的关系,揭示了脱嵌锂过程中该材料的结构稳定性退化原因。结果表明,单晶NMC811材料在0.5 C下充放电100次后,基本上没有裂纹产生,且材料的残余应力较小。而多晶NMC811材料在0.5 C下充放电100次后,沿晶界产生了大量裂纹且最大残余应力是单晶材料的3倍。分别将两种材料组装成电池,单晶NMC811的循环性能和倍率性能都优于多晶NMC811。制备、发展单晶NMC811材料将成为抑制充放电过程中裂纹扩展,改善高镍三元材料循环寿命的重要途径。  相似文献   

7.
O3型层状过渡金属氧化物NaNi_(0.5)Mn_(0.5)O_(2)是目前最有应用前景的钠离子电池正极材料之一。然而,由于在充放电过程中过渡金属层的滑移,O3型正极材料伴随着多重不可逆的复杂相变,所以其应用受到了限制。另外,O3-NaNi_(0.5)Mn_(0.5)O_(2)正极的容量主要集中在3 V左右的低电压区域,在充放电过程中这一区域很容易发生O3-P3相变,所以限制了其能量密度。本研究提出了一种精准的化学元素取代策略来解决这些问题。通过Sn^(4+)掺杂来抑制过渡金属层的滑移,从而抑制循环过程中的不可逆相转变。同时,由于Sn^(4+)具有独特的外层电子结构,在d轨道上没有单电子,无法与O 2p轨道发生杂化,所以O 2p轨道就只与Ni eg轨道发生杂化,增大了Ni—O键的离子度,提高了Ni的氧化还原电势。因此,NaNi_(0.5)Sn_(0.5)O_(2)正极材料的中值电压高达3.28 V。同时,该电极材料表现出较为优异的电化学性能和动力学性质。本工作基于分子轨道杂化对O3型正极材料的氧化还原电势实现了可控调制,从而获得了具有高电压的钠离子电池层状氧化物正极材料。  相似文献   

8.
为了对比铝(Al)、锰(Mn)元素对高镍正极材料循环性能的影响,明确镍钴铝(NCA)、镍钴锰(NCM)及镍钴锰铝(NCMA)三类高镍正极材料循环稳定性的差别以及循环过程中失效机理的差异,本工作选用3种相同镍含量的NCA、NCM及NCMA高镍正极材料对其循环性能以及循环过程中三者结构变化异同点进行了研究。研究结果证实,常温下3款高镍正极材料的循环性能排序为NCA>NCMA>NCM。通过微分容量(d Q/d V)曲线、扫描电子显微镜(SEM)等分析发现,相同阶段3种材料结构破坏程度排序为NCM>NCMA>NCA,电池在循环过程中的容量衰减很大程度上源自正极材料的结构破坏;进一步对3款正极材料在不同循环阶段的电化学交流阻抗谱(EIS)进行分析,发现循环过程中正极阻抗持续增大,且阻抗的增大明显受到晶体及二次颗粒结构变化的影响,电池循环稳定性与正极材料本身结构稳定性密切相关,最终造成3款高镍正极材料循环性能的差异。通过对三者循环性能的系统性对比与分析,加深了对高镍正极材料成分-结构-性能关系的理解,对于提升高镍正极材料的稳定性研究具有重要指导作用。  相似文献   

9.
水系锌离子电池的能量密度高、稳定性好、安全系数高。NiCo_(2)O_(4)材料作为双过渡金属氧化物,其导电性能和电化学活性都很出色,本工作首次采用NiCo_(2)O_(4)材料作为水系锌离子电池的正极。采取了溶胶-凝胶法加煅烧热方法制备出立体尖晶石状的NiCo_(2)O_(4)材料,借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱分析技术(EDS)和电化学技术等表征测试手段,分析这种新型水系锌离子电池正极材料的形貌和电化学性能。结果表明,立体尖晶石状的NiCo_(2)O_(4)材料有着优良的纯度和结晶性,颗粒分散均匀,没有团聚,无杂质且具有良好稳定的充放电性能。电极在100 mA/g电流密度下,首次放电比容量为92 mA·h/g,100圈充放电测试后放电比容量为60 mA·h/g,200圈后,放电比容量保持在44 mA·h/g。但在循环倍率测试中发现,当电流密度较大时,NiCo_(2)O_(4)电极产生了27 mA·h/g的衰减,在一定程度上有着不可逆的冲击破坏。本研究有助于推动水性锌离子电池电极的应用,为高性能水性锌离子电池电极材料的研发提供实验依据。  相似文献   

10.
水系锌离子电池(AZIBs)是未来大型储能领域中具有吸引力的选择之一.但合适的用于锌离子存储的正极材料少之又少.本工作以NASICON结构的正极材料Na3V2(PO4)3(NVP)作为储锌正极材料,在高浓度的电解液中可以实现高效的Zn2+存储并展现出超长的循环性能.本研究采用简单的溶胶凝胶法制备出均匀碳包覆的NVP,并借助X射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电等表征测试手段,分析NVP材料的结构、形貌和用作AZIBs正极时表现出的电化学性能.同时,本工作研究了不同浓度的电解液对电化学性能的影响.结果表明,电解液浓度提升后NVP材料可以展现出更高的容量存储、卓越的倍率性能和超长的循环寿命.在2000 mA/g的超高电流密度下循环1000圈之后,容量保持率仍为77.8%,并且在循环过程中材料的每圈库仑效率接近100%.此外,通过循环伏安法(CV)和恒电流间歇滴定法(GITT)进一步探索了 NVP电极的动力学过程并得出,NVP材料出色的电化学性能的表现归因于其稳定和开放的NASICON框架和优异的动力学行为.  相似文献   

11.
随着锂离子电池在新能源汽车领域应用逐步扩大,续航里程成为制约新能源汽车发展的关键因素,提高锂离子电池的能量密度是解决续航焦虑的有效途径,高镍三元层状材料具有比容量高、成本低及安全性相对较好等优点,被认为是最具前景的高比能锂离子电池正极材料之一。然而,随着三元层状材料中镍含量提高,其循环稳定性和热稳定性显著下降。本工作回顾了锂离子电池正极材料的发展历程,分析了三元层状材料向高镍方向发展的必要性;基于高镍三元层状正极材料的研究现状对当前高镍三元层状材料存在的挑战进行了总结,从阳离子混排、结构退化、微裂纹、表面副反应、热稳定性多个方面综合分析了材料的失效机制;针对高镍三元层状材料存在的问题,综述了表面涂层、元素掺杂、单晶结构以及浓度梯度设计等方面的改性策略,重点探讨了各种改善策略的研究进展以及对高镍三元层状材料电化学性能的影响机理;最后归纳了上述改善策略的特点,基于单一改善策略的优势和不同改善策略的耦合效应,展望了高镍三元层状材料改善策略的发展方向,并提出了多重改善策略协同应用的可行性方案。  相似文献   

12.
锂离子电池(LIBs)凭借能量密度高、能量转换效率高的优势,已成为当今最受欢迎的储能器件。嵌入型正极材料中,锰基层状富锂氧化物xLi2MnO3·(1-x)LiMO2具有最高的放电比容量和高工作电压,但存在结构稳定性差等问题限制其应用在大规模储能领域。本文通过对近期相关文献的探讨,综述了提高富锂正极材料的结构稳定性和电化学性能的策略,回顾了晶格掺杂对锰基层状富锂氧化物正极材料的结构改性设计,分析了锂(Li)位、过渡金属(TM)位和氧(O)位的不同掺杂对其结构和性能的影响,着重介绍了单掺杂和双掺杂两种方法,总结了不同离子在不同位置单掺杂的电化学性能对比,阐述了掺杂后材料的结构变化和影响性能的机制。综合分析表明,晶格掺杂策略对提高循环性能、倍率性能、首次放电容量、首次库仑效率和缓解电压衰减等有显著影响,其中双掺杂的协同效应相比于单掺杂具有更高的结构稳定性和更优异的电化学性能。希望能为富锂相正极材料在下一代高能量密度锂离子电池储能领域的广泛应用提供参考。  相似文献   

13.
Na_(3)V_(2)O_(2)(PO_(4))_(2)F(NVOPF)具有较稳定的聚阴离子结构、较高的工作电压和理论比能量,是一种具有良好应用前景的钠离子电池正极材料。但该材料在合成过程中易发生不规则团聚,且本征电导率低,导致材料的实际比容量较小,倍率性能和循环性能有待提高。通过离子掺杂以及合成具有微纳结构的材料可以有效提高这类材料的结构稳定性和电导率。本工作首次报道了多元醇辅助水热法合成具有空心微球结构的Nb5+掺杂NVOPF[NVNOPF,Na_(3)V_(2-x)NbxO_(2)(PO_(4))2F(0≤x≤0.15)]材料。所制备的NVOPF和NVNOPF是尺寸为0.7~1.0μm的具有中空结构的微球。可以发现微球由尺寸小于100 nm的纳米颗粒组成。纳米颗粒缩短钠离子的扩散距离,并且缓冲了由于钠离子的嵌入/脱出所导致的体积变化,提高了材料的循环稳定性。同时,掺杂Nb5+增大了NVOPF的晶格参数,增大了Na+扩散通道,将Na+在NVOPF中的固相扩散系数由Na_(3)V_(2)O_(2)(PO_(4))_(2)F的6.46×10^(-16)cm^(2)/s提高至Na3V1.90Nb0.10O2(PO_(4))_(2)F的3.52×10^(-15)cm^(2)/s。Na_(3)V_(1.90)Nb_(0.10)O_(2)(PO_(4))_(2)F材料以0.1 C倍率放电,首次放电比容量达126.4 mAh/g;以10 C倍率放电,初始比容量为98.1 mAh/g,500周循环后的容量保持率为95.2%,明显优于未掺杂材料的66.8%。研究结果显示掺杂Nb5+的空心球形微纳结构有效提高了NVOPF材料的电化学性能和循环稳定性。  相似文献   

14.
Fe_(3)O_(4)作为锂离子电池负极材料,在充放电时体积变化较大,导致其容量衰减严重。目前,碳包覆是解决这个问题的主要方式之一。本工作以氧化石墨烯(GO)和Fe^(2+)为原料,用一步水热法合成了三维石墨烯片包覆Fe_(3)O_(4)纳米颗粒3DG@Fe_(3)O_(4)复合材料。使用傅里叶红外光谱(FT-IR)仪、热重分析(TGA)仪、X射线衍射(XRD)仪、拉曼光谱(Raman)仪、扫描电子显微镜(SEM)对复合物进行表征,研究结果表明,复合材料呈现石墨烯(G)片包覆Fe_(3)O_(4)纳米颗粒的三明治结构。同时采用了恒流充放电(GCPL)、循环伏安(CV)以及交流阻抗(EIS)等电化学测试方法,着重研究了Fe_(3)O_(4)含量对其电化学性能的影响,Fe_(3)O_(4)质量分数为83.2%的3DG@Fe_(3)O_(4)-2电极具有最高的比容量和循环性能,在0.1 A/g的电流密度下的首次放电比容量为1412.33 mAh/g,循环100次后的放电比容量为577 mAh/g,是纯Fe_(3)O_(4)电极材料经历100次循环后的6.5倍。一步水热合成方法具有操作简单、合成条件温和及无需额外添加还原剂等优点;制备的复合电极相比纯Fe_(3)O_(4)具有电极容量高、循环稳定性能好的优势,有助于推动Fe_(3)O_(4)基负极材料在电化学领域中的应用。  相似文献   

15.
文章研究了稀土元素La掺杂对镍钴锰酸锂Li Ni_(0.5-x)La_xCo_(0.2)Mn_(0.3)O_2(x=0,0.05,0.08,0.12)的物相和电化学性能的影响。利用液相共沉淀法+固相煅烧工艺制备了目标产物,并综合利用XRD、恒电流充放电技术及交流阻抗技术对材料物理和电化学性能进行了表征。La掺杂量x=0.05样品的首次放电比容量为152.6 mAh/g,库伦效率为93.6%,在1C电流密度下,经过30次电化学循环后的容量保持率为95.9%;在5C充放电电流密度下,掺杂样品的放电比容量为115.3 mAh/g,达到0.2C下放电比容量的76.4%。La掺杂增加了三元材料沿c轴方向的晶格常数,为锂离子在晶格内部的脱嵌提供了更大的空间,提高了锂离子在晶体中的扩散速度,从而显著增强了材料高倍率充放电性能。  相似文献   

16.
层状富镍过渡金属氧化物正极材料因具有比容量高、价格低廉以及对环境友好等特性而受到广泛关注,并已在产品中应用。但其本身固有的一些缺陷,如在循环过程中结构稳定性较差、高温循环衰减过快、导电系数较低及储存性能不佳等,极大地限制了其在各个领域的广泛应用。本文对近年来高镍层状过渡金属氧化物正极材料在循环过程中容量衰减有关机理进行概括总结,并针对不同衰减机理给出简要改进方法。  相似文献   

17.
本研究以三元NCM811为正极材料、人造石墨为负极材料制作了软包锂离子电池,并通过固定正极容量、变化负极容量的方式设计了三种不同N/P比,并对其初始容量、首效、初始内阻、倍率放电、高低温放电、高温存储、循环寿命等进行了研究。结果表明N/P比设计对电芯容量发挥、首效、初始内阻、高低温放电、高温存储、循环寿命均具有一定影响,对倍率放电无明显影响。提高N/P比将有利于正极材料的容量发挥,提高电芯的初始容量;但过高的N/P比会使正极电极电位偏高,电解液易在正极侧发生副反应,而低的N/P比可以使正极具有较低的电极电位,降低电池在高温存储、循环过程中过渡金属溶出和副反应发生,提高电芯的高温存储和循环性能。但N/P比过低时,Li+易在负极表面还原,造成活性锂损失,影响电芯循环性能。综合考察各项电性能,本研究最优N/P比设计为1.10。  相似文献   

18.
前驱体制备过程中通过控制不同的反应条件可以得到形貌各异的材料,而其中氨值对于前驱体的微观形貌影响颇大。本文在不同氨值条件下制备得到形貌各异的高镍三元前驱体材料,发现低氨值条件下制备得到的前驱体表面晶须细致,内部结构密实且外部呈树杈状结构。这种条件下制备得到的前驱体材料经烧结后,一次颗粒仍呈放射状生长,且颗粒更为细长。该材料制成扣式电池后,0.2 C放电条件下比容量可达210.3 mA·h/g,首次充放电效率可达93.05%,且倍率及循环性能优异。与市面所售相同配比产品相比,放电容量提升3%。该形貌控制方法为高比容量三元正极材料的规模化制备提供了一种新思路。  相似文献   

19.
制备锂离子电池正极材料LiNi0.8Co0.2O2通常需要在纯氧气气氛下进行烧结.本工作以硫酸镍,硫酸钴和氢氧化钠为原料,采用并流共沉淀法制备了高密度Ni0.8Co0.2(OH)2前驱体,再采用高温固相反应法在空气中烧结制备了锂离子电池LiNi0.8Co0.2O2正极材料.采用X射线衍射(XRD),扫描电镜(SEM),恒流充放电测试(ECT),循环伏安(CV)与比表面积(BET)测试等方法对目标样品进行了表征,详细考察了烧结条件对材料结构,微观形貌及电化学性能的影响.结果表明,锂/(钴+镍)摩尔比为1.13∶1时,在管式炉中和空气气氛下于第一段烧结温度700 ℃保温9 h,于第二段烧结温度750 ℃保温12 h,合成的材料比表面积适中(0.78 m2/g),具有规则的六边形α-NaFeO2层状结构,晶粒分布均匀,电化学性能最优.在0.5 C充放电倍率下和2.7~4.3 V电压范围内,其首次放电比容量达到153.0 mA·h/g,循环20次后放电比容量仍为150.7 mA·h/g,容量保持率达到98.5%,显示了优异的循环稳定性能,可用做高能量密度动力电池正极材料.  相似文献   

20.
锂离子电池具有能量密度高、自放电率低、使用温度范围广及循环寿命长等优点,在便携式电子设备、电动汽车和储能等领域得到广泛应用。TiNb_(2)O_(7)具有较高理论比容量(388 mAh/g),在充放电过程中体积形变较小,且在快速充电时可以避免锂枝晶的生成,使电池具有更好的安全性和更短的充电时间,是很有潜力的锂离子电池负极材料之一。但是,TiNb_(2)O_(7)的电子电导率和离子电导率较低,阻碍了其推广应用。本文作者通过对近期相关研究的探讨,结合国内外在TiNb_(2)O_(7)负极材料制备方面的最新研究进展,综述了TiNb_(2)O_(7)的结构、制备方法及改性策略,对其晶体结构及嵌锂机制进行讨论;同时介绍了高温固相法、溶胶凝胶法、静电纺丝法、溶剂热法及模板法等几种TiNb_(2)O_(7)的制备方法,分别介绍了纳米化、掺杂、引入氧空位及添加导电涂层等四个改性方法及其对TiNb_(2)O_(7)电化学性能的改善效果。综述分析表明,纳米化可以缩短锂离子的扩散路径,掺杂以及氧空位的引入可以改变TiNb_(2)O_(7)结构,复合电极可以改善其导电性,不同的改性方法可以有效地提高电极材料的倍率及循环性能,有望使其在高功率储能器件中得到良好应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号