首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂电池放电过程中的产热受电池内部电化学反应和欧姆效应影响,电池产热由电池化学与动力学决定,而电池动力学依赖于电池运行条件和设计参数。锂电池的六个温度依赖性参数对锂电池的放电过程中的产热速率具有影响,包括固相活性颗粒和电解液中的锂离子扩散系数、反应速率常数、电极开路电压、电解液离子电导率、热力学因子和阳离子迁移数。基于LiFePO_4圆柱形电池建立了伪二维电化学-热耦合模型,研究电池在恒流放电过程中的产热速率,以及正极、隔膜和负极各部分的产热速率和所占比例。结果表明,总产热功率随反应热的波动而变化,其中正极电极层中反应热占比最大,负极电极层中极化产热所占比例高于正极,而隔膜中的产热主要来源自欧姆热。不同对流传热系数条件下,电池的表面温度和内部温度差都不同,因此要合理的采取电池热管理措施。  相似文献   

2.
锂离子电池在工作过程中产生的热效应会影响其温度和电化学性能,并极大地影响电池的安全性和使用寿命.分析电池在放电过程的热特性变化规律及产热机制,评估电池内部不同性质的产热对温度变化的相互作用,对于电池热管理系统的设计起到至关重要的作用.因此,本工作以富镍三元锂离子电池为研究对象,建立了基于动态参数响应的电化学热耦合模型,在0℃和40℃环境温度下分别进行了 0.3 C、1C放电与温升实验验证,验证结果表明耦合模型具有较好的精确性和可靠性,能够准确地分析电池热特性.基于验证后的模型,研究了富镍锂离子电池在不同放电倍率、环境温度、换热环境下的温升特性,并进一步分析了电池内部生热机理及发热特性.结果表明:放电倍率的增大使得电池的总产热量迅速增大,同时加剧了电池内部的温度不均匀性,正负极熵热系数较大的差异性使得正极区域产热较大而负极产热较为平缓.研究结果能够为锂离子电池的热性能评估和电池组的热管理系统设计提供一定的指导意义.  相似文献   

3.
研究一种以钛酸锂氧化物(LTO)为负极材料的锂离子电池,对电池在不同倍率下的性能以及温升情况进行研究,并对电池在66C(C为最大容量)的放电倍率下进行连续循环放电测试,通过实验可得:电池在66C状态下达到最大温升,最高温度51.72℃,达到最大温差25.65℃,其中最大产热率为739.97 W,66C放电倍率下电池放电深度仅为总电量的42%,随着循环次数以及放电倍率的增加,电池的内阻呈逐渐减小的趋势,最小为0.63 mΩ。最后根据电池在高倍率下的循环放电,对卡尔曼滤波算法进行改进,应用扩展卡尔曼滤波算法对电池的容量衰减进行预测,验证了此算法在高倍率放电情况下的适用程度,误差最大控制在0.05以内,达到了良好效果。  相似文献   

4.
通过某18650型NCM锂离子电池在恒温箱温度为40℃、25℃时的0.5 C、1 C、2 C放电倍率实验与0℃、-25℃时0.5 C倍率的放电实验,得到不同温度与放电倍率下电池的电压与温度曲线,并验证电化学-热耦合模型的可靠性,在25℃时模型精确度最高,电压误差为0.07 V,温度误差为0.8℃,-25℃时精确度最低,电压误差为0.6 V,温度误差为1.5℃.借助模型进行25℃时电池的电极产热分析,并模拟25℃温度条件下2 C放电时的温度场分布,放电结束时电池正负极极耳处温度最高,具体数值为34.8℃,与气流正对的电池表面的温度最低,数值为34℃,在气流后侧距电池中心50 mm处的模型边界处受电池产热与气流的影响温度上升4℃.  相似文献   

5.
针对软包锂离子电池放电过程中温度变化过程进行研究,依据电池产热基本理论,通过内阻实验及0.5 C放电倍率下的温升实验计算出瞬态生热率曲线,得出电池熵热系数,建立生热速率随放电深度不断变化的瞬态生热模型,基于该模型进行不同放电倍率的温度仿真模拟,并与实验进行对比。结果表明,温度变化模拟结果与实验相吻合,生热率变化模拟结果与实验计算值相符合,模型可以很好地模拟电池在不同放电倍率下的温度变化,对电池温升过程分析及电池热管理过程控制具有指导意义。  相似文献   

6.
采用三电极电池实时监测不同倍率充放电过程中全电池、正极对锂、负极对锂以及浓差电池电压变化,得到不同倍率下充放电过程中正负极之间液相锂离子浓度变化规律,与此同时还研究了不同层数隔膜三电极电池正负极之间液相锂离子浓度的变化趋势.本工作通过恒电流间歇滴定法(GITT)测试了三电极电池中正极Li(Ni0.65Co0.2Mn0.15)O2(NCM65)电极表观化学扩散系数和负极石墨电极表观化学扩散系数.结果表明,充放电过程中正负极之间液相锂离子浓度变化与负极对锂电位有关,且充电过程正负极之间液相锂离子浓度大于放电过程正负极之间液相锂离子浓度.充电过程中,倍率越大,正负极之间液相锂离子浓度越大,放电过程则相反.通过增加正负极之间隔膜层数以此增加扩散路径,隔膜层数增加正负极之间液相锂离子浓度有所降低,总体锂离子浓度变化趋势保持不变,但靠近正负极侧液相锂离子浓度有一定差异.GITT测试正极NCM65电极表观化学扩散系数(3.57×10-9~5.63×10-8cm2/s)大于负极石墨电极表观化学扩散系数(1.16×10-10~8.21×10-8cm2/s),且负极石墨表观化学扩散系数的变化趋势也与负极对锂电位有关,因此得出正极脱嵌锂速度大于负极,液相锂离子浓度变化受负极扩散的影响.  相似文献   

7.
为了明晰锂离子电池在放电过程中产生的扩散诱导应力和热应力对电池的影响,使用Comsol Multiphysics 6.0建立了18.5 Ah软包NCM111锂离子电池的电化学-力-热耦合模型,基于该模型对不同放电倍率下电池的负极颗粒中心表面锂浓度差、扩散诱导应力、热应力及膨胀行为进行了仿真分析。扩散诱导应力可通过一维电化学模型及其衍生的颗粒维度进行仿真分析,而热应力则需要通过三维固体力学和传热模型进行仿真。研究结果表明,随着放电倍率的增加,电池产生的扩散诱导应力和热应力都会增大,因此,低放电倍率有助于降低电池产生的应力。负极颗粒产生的扩散诱导应力与颗粒中心表面锂浓度差相关,颗粒中心与表面的锂浓度差随着放电过程的进行逐渐增大。将一维模型中的负极视为由无数负极颗粒组成的线段,放电前期,靠近隔膜端的颗粒中心与表面锂浓度差高于集流体端,放电后期则相反,这个变化发生的转折点在放电深度为60%~70%之间。这也意味着放电前期隔膜端的负极颗粒产生的扩散诱导应力大于集流体端的负极颗粒,也更容易破裂,而放电后期则相反。负极颗粒产生的扩散诱导应力大小为兆帕级,远高于电芯产生的大小为千帕级的热应力。同时,电...  相似文献   

8.
本工作以21700容量型NCM811锂离子动力电池为研究对象,设计了正六边形布置的电池模组,外覆圆柱型石墨-石蜡复合相变材料的结构.利用数值模拟方法探究了不同恒定倍率放电,以及相邻两电池不同间距对模组热特性的影响.结果表明,对于不同倍率,相邻电池间距对电池模组高倍率放电过程中的温度影响要远大于低倍率放电过程,而对于相同倍率,小间距模组从放电开始至结束的温升要高于中间距和大间距模组.电池温度的变化相对于热流量在时间上有一定滞后,通过监测热流量的数值,能够对电池热管理的失效做出提前预知,提高电池组的安全性.  相似文献   

9.
锂离子电池凭借其良好的性能,在新能源汽车的发展过程中备受青睐,但电池成组后因为电池的不一致性等原因会造成部分电池出现过充电现象,长期循环会影响电池的性能和寿命。本工作对某锂离子电池分别进行了4.3 V、4.4 V和4.5 V的过充循环试验,通过对新电池及过充循环后的电池进行开路电压温度系数测试、混合功率脉冲测试和等温量热测试获得了电池的熵热系数、等效直流内阻和产热功率及产热量,并利用Bernadi产热模型计算了电池的可逆热和不可逆热,综合分析过充循环对电池充放电产热特性的影响。结果表明,高的过充电压对电池性能影响更加明显,与新电池相比,4.3 V、4.4 V过充循环后的电池内阻增加并不明显,4.5 V过充循环后电池内阻最大增加了42.41%;过充循环后的电池熵热系数曲线波动更加明显且幅度随着循环电压的增大而增大;相比于放电,过充循环对电池的充电产热特性影响更明显;在电池产热的热源中,过充循环会先对可逆热产生影响,且随着过充电压的升高,可逆热占比呈现出增大的趋势。  相似文献   

10.
电动汽车行业迅速发展,高倍率的锂离子电池是其关键,因此需要不断开发适用高倍率充放电的电池材料。本文简要综述了高倍率锂离子电池正极材料、负极材料、隔膜和电解液方面的研究进展,并对高倍率锂离子电池材料发展进行了展望。  相似文献   

11.
本工作以NCM811电池为主要研究目标,探究在正常工作情况下的电池性能。具体包括不同环境温度与放电倍率下的放电性能,以及初次循环与第2000次循环时的电池容量变化,得到电池的电压曲线,并将结果与NCM523电池以及NCA电池进行对比。同时,由于NCM811电池存在热安全问题,因此,探究了其在热失控情况下自身的电压与温升情况,总结了其温度传递规律,并与实验结果进行对照。基于上述结果得到:电池在正常工作情况下,NCM811电池在倍率充放电性能上表现优异,在大倍率充放电时电池容量保存较好,NCM523电池与NCA电池均表现出电池容量衰减;在电池的循环老化方面,与NCM523电池相同,NCM811电池也表现出明显的容量衰减,NCA电池容量几乎不发生变化;在高低温放电方面,电池在低温时的产热均高于高温时的产热,在相同的环境温度下,NCM811电池温升最为明显,存在较大的热安全隐患,NCM523电池与NCA电池升温较为平缓;在电池发生热失控时,电池电压突降至0 V,温度短时间内升至1200 K左右,仅在发生热失控的部分,温度随时间变化明显,其余部分温度趋于恒定。与实验过程相比,仿真过程热失控触发时间较晚,温度升高较快,电池最高温度较低。  相似文献   

12.
锂离子电池的散热性能与液冷板上流道的形状、液流流向、液流入口温度、液流入口流速和放电倍率等有关。本工作以电池最高温度、温差、温度标准差及压降为评价指标,设计了一种正弦函数液冷板流道,运用COMSOL有限元软件分析正弦流道频率与振幅对锂离子电池散热性能的影响并探讨不同放电倍率、不同入口温度和不同入口流速条件下流体流向对锂离子电池的最高温度、温度均匀性和温度一致性的影响。结果表明:低频率和低振幅的正弦函数流道有利于电池的散热;改变流体流向有利于改善锂离子电池的最高温度、温度均匀性和温度一致性;随着交错流次数的增加,锂离子电池的最高温度和温差均减小;高放电倍率下流体流向对锂离子电池散热性能的影响更大;液流入口温度为25℃时,改变流体流向锂离子电池的散热效果最佳。  相似文献   

13.
当前车用动力电池老化性能衰退问题日益凸显,动力电池老化后的性能受到了广泛关注.本文以18650型NCM811锂离子电池为研究对象,探究电池老化后的放电性能和充放电产热特性.为说明电池老化后的性能变化,以同型号新电池的对应性能参数作为参考量.开展了不同环境温度和不同放电倍率条件下电池的放电性能试验,得到电池放电电压曲线、...  相似文献   

14.
锂离子电池广泛用于新能源汽车等领域。为了便于设计高效的电池热管理方案,提高电池耐久性,建立了三维电化学-热耦合模型,该模型能够从时间与空间上反映电芯产热率与电池单体温度分布,用于预测极片不同部分的电特性与电池单体温度分布。3个单体并联的电池组热模型由3个单体尺寸的热模型组成,每一个热模型皆与极片尺寸的三维电化学模型耦合。实验数据验证了该三维电化学-热耦合模型的有效性。其中,电池单体端电压平均绝对误差不超过0.016 V,温度的平均绝对误差不超过0.36℃;电池组各表面的温度平均误差不超过0.40℃。深入分析表明:正极材料中的电流密度与放电深度和电化学反应区域有关。在放电的前中期,电化学反应区域主要在凸缘处,此时凸缘处电流密度最高;在放电后期,电化学反应区域主要在正极材料的底部,此时底部的电流密度大于凸缘处。此外,电池组的温度不是电池单体温度数值上的简单叠加,中间电池温度比两侧电池温度高,且在电池组边界条件一致时,两侧电池温度成对称分布。电池组之间存在空气不流通而引起的温度聚集效应。减少电池组间的空隙、在其中加入热导率大的材料作为传热介质能有效降低中间电池的温度。  相似文献   

15.
本工作针对三元锂电池建立了电池电化学仿真经典的P2D模型,并通过仿真手段定量分析电池正极活性颗粒粒径、负极活性颗粒粒径、正极极片厚度、负极极片厚度、隔膜厚度对电池0.1~3 C倍率放电容量的影响,对仿真模型标定以及性能定制化开发具有重要意义。通过仿真数据可知,正极活性颗粒粒径对电压-容量曲线的影响集中在电压高于3.3 V的部分;负极活性颗粒粒径对电压-容量曲线的全电压段均有影响;正极极片厚度对电压-容量曲线的全电压段均有影响;负极极片厚度对电压-容量曲线的影响集中在电压低于3.6 V的部分;隔膜厚度对电压-容量曲线无影响。汇总分析仿真结果可知,正负极极片厚度是电池容量的正响应因素,负极粒径是电池容量的负响应因素,且均符合平方多项式关系;正极颗粒粒径和隔膜厚度对放电容量不影响。  相似文献   

16.
本研究采用低成本易量产的方法制备了二次粒子黏接的石墨负极材料,并对其进行了氮掺杂,制备出具备高比容量和高倍率特性的锂离子电池负极材料。在扣式电池测试中,该材料表现出359.8 mA·h/g的可逆容量,组装的软包装全电池最小比能量可达230 W·h/kg,体积能量密度可达650 W·h/L。该软包装电池具备良好的3 C快速充电能力,充电容量可以在10 min内达到额定容量的51%,30 min即可充满电量,表现出极好的快速充电特性。在室温下进行3 C倍率充电和1 C倍率放电的循环测试中,循环1000次循环后容量保持率依然超过88%的初始容量,循环厚度膨胀率为10.1%,可满足大多数电子设备和电动汽车的需求。  相似文献   

17.
分别以α-Al2O3和Li2TiO3作为锂离子电池正极和负极中的安全添加剂,提出了安全添加剂的作用模型,系统比较了有无安全添加剂的两组电池的电化学性能和安全性能。电化学性能测试结果表明,安全添加剂的加入会很小幅度降低锂离子电池的能量密度;电池的倍率性能不受影响,其在5 C放电倍率时容量保持率达到82.3%(以1 C为基准);电池的预期循环寿命达2409次(按照80% DOD计算),相比对比组电池的896次预算寿命大幅增加。安全性能测试结果表明,添加了安全添加剂的电池能够通过严苛的穿刺测试、重物撞击测试和外短路测试等安全测试,安全添加剂的存在可以有效避免电池内部局部热点的产生,使不可控的内部短路转变为可控的低倍率放电,显著提高电池的安全性能,在商业化方面展示出良好的应用前景。  相似文献   

18.
锂离子电池电极是决定电池性能优劣的关键因素,在多孔电极理论基础上引入分形理论,重构电极的微结构,考虑结构参数以及温度对有效扩散系数的影响,推导出锂离子在固、液相中有效扩散系数的理论模型,对其影响因素进行分析;建立热-化耦合模型,分析热模型与电化学模型之间的关系;模拟放电过程,探究不同固、液相有效扩散系数对放电性能的影响。结果表明,液相中锂离子的有效扩散系数随面积分形维数、孔隙度以及温度增大而增大,随迂曲分形维数增大而减小;固相有效扩散系数随面积分形维数增大而减小;在相对高倍率放电的情况下,改变负极颗粒粒径大小及分布,使得电极微观结构发生变化,从而使锂离子在固、液相中有效扩散系数发生变化,进一步影响了电池的最大放电容量。本工作为锂离子电池电极的制造提供了基础理论参考。  相似文献   

19.
本研究以三元NCM811为正极材料、人造石墨为负极材料制作了软包锂离子电池,并通过固定正极容量、变化负极容量的方式设计了三种不同N/P比,并对其初始容量、首效、初始内阻、倍率放电、高低温放电、高温存储、循环寿命等进行了研究。结果表明N/P比设计对电芯容量发挥、首效、初始内阻、高低温放电、高温存储、循环寿命均具有一定影响,对倍率放电无明显影响。提高N/P比将有利于正极材料的容量发挥,提高电芯的初始容量;但过高的N/P比会使正极电极电位偏高,电解液易在正极侧发生副反应,而低的N/P比可以使正极具有较低的电极电位,降低电池在高温存储、循环过程中过渡金属溶出和副反应发生,提高电芯的高温存储和循环性能。但N/P比过低时,Li+易在负极表面还原,造成活性锂损失,影响电芯循环性能。综合考察各项电性能,本研究最优N/P比设计为1.10。  相似文献   

20.
以光伏电池生产废料中的大尺寸硅颗粒(200~800 nm)为原料,水性聚氨酯(PU)和聚苯胺(PANI)作为碳源,通过液相包裹法和低温热解法制备了不同结构碳复合的硅碳负极材料(SPU与SPU#PANI),分别研究了复合碳含量、微结构与元素掺杂对负极电化学性能的影响。SPU负极中碳复合量低,首次放电比容量高达2193.6 mAh/g,但循环稳定性差。经二级碳复合后的SPU#PANI导电性提高,在多孔碳微结构支撑作用下,不仅获得了较高的放电比容量(1488.8 mAh/g),而且经100次循环后SPU#PANI放电比容量保持在756.8 mAh/g以上,表现出良好的倍率性能。研究结果表明,大尺寸硅颗粒表面复合了具备多孔结构的碳后,不仅为硅充放电过程中的膨胀提供了缓冲,也为锂离子传输提供通道,有效地提升了硅基负极的电化学性能和稳定性。本工作采用的多级碳低温热解复合方法,可为锂离子电池硅基负极产业化技术发展提供重要的借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号