共查询到20条相似文献,搜索用时 15 毫秒
1.
针对复杂背景下红外弱小目标难以准确快速检测的问题,提出了一种红外弱小目标轻量化实时检测网络模型YOLO-IDSTD。首先,为提高检测速度,重新设计了特征提取部分的网络结构,并在输入层后使用Focus模块以减少推理时间;其次,为增强检测能力,特征融合部分采用路径聚合网络,添加了改进的感受野增强模块;最后,目标检测部分增加至四尺度检测。在红外弱小目标数据集上进行的对比实验表明,相较于经典轻量化模型YOLOv3-tiny,文中提出的模型召回率提升了7.57%,平均检测精度提高了1.92%,CPU推理速度提升了36.1%,可较好地兼顾精度和速度,计算量与参数量明显减少,模型尺寸压缩至7.27 MB,减少了对硬件平台运算能力的依赖,实现了红外弱小目标准确又快速的检测。 相似文献
2.
传统红外图像行人检测方法利用人工进行比例模板设计和行人轮廓特征提取,由于预设模板比例相对固定,当行人因衣着增减、随身携带物品及姿态改变等原因使其轮廓比例发生较大变化时,往往会导致算法失灵而出现漏检现象。而基于深度学习的目标检测则通过对大量样本的本质特征进行抽象、提取、加工和整合,进而实现对更多样特征的学习。因此利用深度学习目标检测算法进行红外图像行人检测应用的研究可以弥补传统检测方法的不足。YOLOv3是目前性能较为均衡的识别算法,本文在分析YOLOv3系列算法的原理和特点的基础上提出了一个新的改进算法模型——Darknet-19-yolo-3,在几乎不损失检测精度的条件下提升检测速度,一定程度上实现检测准确率和速度的相对平衡。 相似文献
3.
红外探测系统需要尽早发现目标以便及时拦截,但是红外图像上的小目标检测是一个挑战十足的任务。为了提高检测准确率,提出一种基于自适应对比度增强的红外小目标检测方法。为了利用自注意力机制和卷积各自的优势,设计了一个高效的特征提取网络和一个面向小目标的检测头。同时为了解决实际应用中出现的弱目标,在检测子网络前添加了一个图像预处理子网络,该模块可以自适应地调节图像对比度。在红外空中小目标数据集上的实验表明,提出的方法能达到93.76%的检测精度,与经典的检测方法相比,能够更好地平衡检测精度和召回率,证明了方法的巨大应用潜力。 相似文献
4.
针对用传统方法难以解决城市背景下红外图像多目标检测的问题,采用迁移学习技术把深度学习中可见光域的目标检测框架迁移到红外域中。利用该方法建立的模型的小目标检测性能非常好,在制作的测试集上平均精度mAP(IoU=0.50)为0.858。还对训练数据与模型检测性能之间的关系进行了初步研究。制作了大数据量和小数据量2个训练集,对模型进行训练,然后在相同的测试集上进行测试。通过小数据量训练的模型在制作的测试集上的平均精度mAP(IoU=0.50)为0.615。实验结果表明,数据的多样性、数量、质量等都会影响模型的好坏。 相似文献
5.
6.
针对现有基于可见光的目标检测算法存在的不足,提出了一种红外和可见光图像融合的目标检测方法。该方法将深度可分离卷积与残差结构相结合,构建并列的高效率特征提取网络,分别提取红外和可见光图像目标信息;同时,引入自适应特征融合模块以自主学习的方式融合两支路对应尺度的特征,使两类图像信息互补;最后,利用特征金字塔结构将深层特征逐层与浅层融合,提升网络对不同尺度目标的检测精度。实验结果表明,所提网络能够充分融合红外和可见光图像中的有效信息,并在保障精度与效率的前提下实现目标识别与定位;同时,在实际变电站设备检测场景中,该网络也体现出较好的鲁棒性和泛化能力,可以高效完成检测任务。 相似文献
7.
8.
针对仅配备CPU的红外成像系统,本文提出了一种基于中心点的实时目标检测方法。遵循轻量化的设计原则,首先引入了低计算成本的特征提取网络,并在此基础上设计了相应的特征融合模块以充分利用不同阶段提取的空间和上下文信息。同时为了进一步提高网络的表征能力,提出了一个背景抑制模块以完成对前景区域的特征增强,并最终通过轻量检测网络实现对目标中心点及其相应属性的预测。在红外空中目标数据集上的实验表明,本文所提方法能够在CPU上以21.69 ms每帧的速度达到90.24%的检测精度。与经典的Tiny-YOLOv3相比,在计算量和参数量仅为前者21%和11%的前提下,检测精度提高了10.94%,并且检测速度提高了10.02 ms,证明了方法在实时红外系统中的巨大应用潜力。 相似文献
9.
红外检测技术具有受环境负面影响小、抗外界干扰能力强等优势,在众多领域皆有极为重要的应用价值。然而,由于红外小目标存在缺少明显的可用信息、边界模糊等问题,对其检测的难度较大,因而成为目标检测领域的研究热点与难点。本文通过分析困扰红外小目标检测研究发展的难题所在,首先就目前针对其检测的传统算法原理进行简要说明。其次,详细阐述了基于深度学习的多类型红外小目标检测算法,并对相关算法的分类、评估指标、相关数据集等多方面内容进行了介绍,随之以实例说明对当前算法改进的有效方式。最后,归纳总结现有检测算法的优缺点,探讨了红外小目标检测研究领域的未来发展趋势,即向高精度、高实时性、强鲁棒性、低复杂度的算法方面深入研究。 相似文献
10.
11.
12.
针对资源受限的红外成像系统准确、实时检测目标的需求,提出了一种轻量型的红外图像目标检测算法GPNet。采用GhostNet优化特征提取网络,使用改进的PANet进行特征融合,利用深度可分离卷积替换特定位置的普通3×3卷积,可以更好地提取多尺度特征并减少参数量。公共数据集上的实验表明,本文算法与YOLOv4、YOLOv5-m相比,参数量分别降低了81%和42%;与YOLOX-m相比,平均精度均值提高了2.5%,参数量降低了51%;参数量为12.3 M,检测时间为14 ms,实现了检测准确性和参数量的平衡。 相似文献
13.
针对红外低秩块模型计算复杂度大,容易误判等不足,提出了一种更加有效的红外小目标局部多尺度低秩分解检测算法。该算法首先利用非下采样金字塔变换对红外小目标图像做多尺度分解;接着,将分解出的高频子带进行融合,通过融合后的高频信息提取出目标感兴趣区域;最后,利用红外小目标背景的非局部自相关性质对感兴趣区域进行分块,并对各块进行重新排列构成一个新的矩阵;最后,对该矩阵做低秩分解,提取出红外小目标。实验结果表明,与其他低秩分解类方法相比,所提出算法速度更快,提取效果更好,是一种性能优越的方法。 相似文献
14.
15.
16.
针对红外图像存在细节纹理特征差、对比度低、目标检测效果差等问题,基于YOLOv4(You Only Look Once version 4)架构提出了一种融合通道注意力机制的多尺度红外目标检测模型。该模型首先通过降低主干特征提取网络深度,减少了模型参数。其次,为补充浅层高分辨率特征信息,重新构建多尺度特征融合模块,提高了特征信息利用率。最后在多尺度加强特征图输出前,融入通道注意力机制,进一步提高红外特征提取能力,降低噪声干扰。实验结果表明,本文算法模型大小仅为YOLOv4的28.87%,对红外目标的检测精度得到了明显提升。 相似文献
17.
红外图像中行人的快速检测一直是计算机视觉领域的热点和难点。针对红外图像行人目标检测算法检测速度和检测精度难以平衡,算法模型体积较大,在中低性能设备中难以部署和实时运行的问题,提出了一种基于YOLO算法的轻量红外图像行人检测方法。在分析了MobileNet-v3等轻量网络在YOLO-v3算法上的性能和特点之后,该方法提出了引入注意力机制的轻量特征提取网络(CSPmini-a)、特征融合模块和解耦检测端分类回归结构三种改进措施,在满足网络模型轻量的情况下保证了一定的检测精度。实验表明,该方法有效的实现了红外图像行人目标检测的准确性和快速性。 相似文献
18.
为了增强舰船检测的抗干扰性能,本文提出了一种有效且稳定的单阶段舰船检测网络,该网络主要由3个模块组成:特征优化模块,特征金字塔融合模块和上下文增强模块,其中特征优化模块是提取多尺度上下文信息,并进一步细化和增强顶层特征输入特性,增强弱小目标检测性能;特征金字塔融合模块能够生成表征能力更强的语义信息;上下文增强模块则是整合局部和全局特征增强网络特征表达能力,以降低复杂背景对检测性影响,平衡前景和背景的不均衡差异,消除鱼鳞波的影响。为了验证本文所提方法的有效性和鲁棒性,本文对自建的舰船数据集进行了定性定量验证。实验结果表明,相比现有最新基准对比模型,本文所提网络在自建数据集上均达到了最优性能,在不增加复杂度的情况下极大提升了检测精度。 相似文献
19.
为了增强舰船检测的抗干扰性能,本文提出了一种有效且稳定的单阶段舰船检测网络,该网络主要由3个模块组成:特征优化模块,特征金字塔融合模块和上下文增强模块,其中特征优化模块是提取多尺度上下文信息,并进一步细化和增强顶层特征输入特性,增强弱小目标检测性能;特征金字塔融合模块能够生成表征能力更强的语义信息;上下文增强模块则是整合局部和全局特征增强网络特征表达能力,以降低复杂背景对检测性影响,平衡前景和背景的不均衡差异,消除鱼鳞波的影响。为了验证本文所提方法的有效性和鲁棒性,本文对自建的舰船数据集进行了定性定量验证。实验结果表明,相比现有最新基准对比模型,本文所提网络在自建数据集上均达到了最优性能,在不增加复杂度的情况下极大提升了检测精度。 相似文献