首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Addition of fly ash has beneficial effects on some mechanical properties of concrete, as well as on the corrosion process induced by the chloride ion. The aim of this study was to investigate the effect of fly ash addition on the corrosion process occurring in reinforced concrete exposed simultaneously to carbon dioxide and chloride. The corrosion process of steel rebars embedded in mortar with 15% and 30% of fly ash was tested under carbon dioxide and sodium chloride contamination. Monitoring of open circuit potential and electrochemical impedance spectroscopy (EIS) were used to follow the corrosion process. Results have shown that under accelerated carbonation fly ash mortar shows higher corrosion rates. The chloride content in mortar exposed to accelerated carbonation increases with the amount of fly ash. However, under natural carbonation it decreases with the addition of fly ash.  相似文献   

2.
The paper addresses the effect of crack opening on the ability of carbon dioxide to diffuse along a crack. The experimental tests were carried out on mortar samples. A mechanical expansive core was used to generate cracks of constant width across the thickness of the sample. Cracked specimens with crack openings ranging from 9 to 400 μm were exposed to accelerated carbonation for 65 days. Then they were removed to determine the depth of carbonation perpendicular to the crack path. Theses depths were compared to the measured ones on the reference samples. The results show that crack opening significantly influences the ability of carbon dioxide to diffuse along the crack. Indeed, the carbonation depth perpendicular to the crack wall indicates a lower capacity to diffuse in cracks less than 41 μm in width. For crack openings ranging from 9 to 41 μm, there was still diffusion along the crack path. Moreover, carbonation of the interface between steel and mortar was observed inducing a depassivation of the reinforcement. For the duration of the experiments, there was no diffusion in crack openings of less than 9 μm. The effect of interlocking phenomena between the fracture surfaces on the ability of carbon dioxide to diffuse along the crack, was also studied. The results showed that interlocking phenomena in cracks is the main factor limiting the diffusion of carbon dioxide in fine cracks.  相似文献   

3.
Concrete cover cracking induced by corrosion of steel reinforcement is a major influencing factor for durability and serviceability of reinforced concrete structures. Here in this study, the influence of concrete meso-structure on the failure pattern of concrete cover is accounted for. The concrete is assumed to be a three-phase composite composed of aggregate, mortar matrix and the interfacial transition zone (ITZ). And a concrete random aggregate structure is established for the study on the mechanical behavior of radial corrosion expansion. In the present simulations, the plasticity damaged model is used to describe the mechanical behavior of the mortar matrix and the ITZ, and it is assumed that the corrosion of steel reinforcement is uniform. The cracking of concrete cover due to steel reinforcement corrosion is numerically simulated. The simulation results have a good agreement with the available test data and they are between the two analytical results. The failure patterns obtained from the macro-scale homogeneous model and the meso-scale heterogeneous model are compared. Furthermore, the influences of ratio of cover thickness and reinforcement diameter (i.e. c/d), the location of the steel reinforcement (i.e., placed at the middle and corner zones) and the concrete tensile strength on the steel corrosion rate when the concrete cover cracks are investigated. Finally, some useful conclusions are drawn.  相似文献   

4.
Bonding an overlay of new concrete onto the damaged concrete is a usual repair method. Because of the different shrinkage rate of the new and old concrete, restrained shrinkage cracks will appear in the new concrete. The cracks will reduce durability and strength of the repaired structure. A new repair method using an interface layer of carbon fiber reinforced cement mortar between new and old concrete was developed in this paper. The new method was found to be very effective in reducing shrinkage cracking of repaired beams and slabs. Comparing with normal repaired beams, the maximum observed width of the resulting cracks was decreased by up to 43%, the cumulative width was decreased by up to 78%, the cumulative length was decreased by up to 73%, and the total area of the cracks was decreased by up to 81%.  相似文献   

5.
M. Ohtsu  K. Mori  Y. Kawasaki 《Strain》2011,47(Z2):179-186
Abstract: Concrete structures could suffer from the corrosion of reinforcing steel bars (rebars) because of the penetration of chloride ions. For crack detection and damage evaluation in concrete, acoustic emission (AE) techniques have been extensively applied to concrete and concrete structures. In the corrosion process of reinforced concrete, it is demonstrated that continuous AE monitoring is available to identify the onset of corrosion and the nucleation of concrete cracking because of the expansion of corrosion products. At the latter stage, the expansion of corrosion products generates corrosion‐induced cracks in concrete. The generating mechanisms of these cracks are studied in accelerated corrosion tests of reinforced concrete beams. Kinematics of microcracks are identified by SiGMA (Simplified Green’s functions for Moment tensor Analysis) analysis of AE. It is demonstrated that AE activity at the onset of corrosion and at the nucleation of corrosion‐induced cracks is in remarkable agreement with the phenomenological model of the corrosion process in steel. Then, mechanisms of corrosion‐induced cracks are visually and quantitatively investigated by the SiGMA analysis.  相似文献   

6.
7.
Low amounts of polypropylene fibres are added to concrete as a secondary reinforcement to control cracking. Whether this addition might improve the corrosion resistance of the concrete reinforcement by increasing the resistance to carbonation, via reducing penetrating paths, is the subject addressed in the present paper. Crack control by the fibres in plastic state mortars and crack evolution with time have been studied. Furthermore, the influence of crack width on the steel bar corrosion induced by carbonation has also been monitored. Circular specimens made of mortar have been employed in the experimental phase of the study, using a water/cement ratio of 0.50 and cement/sand ratio of 2/1. The polypropylene fibre content was 0% and 0.5% by volume. Low modulus polypropylene fibres may control the crack width in specimens subjected to inadequate curing conditions. No relationship between crack width and time for corrosion initiation has been observed. However, a beneficial effect of fibre addition on the corrosion rate was found.  相似文献   

8.
考虑氯离子侵蚀与混凝土碳化的公路桥梁时变可靠度分析   总被引:2,自引:1,他引:1  
王建秀  秦权 《工程力学》2007,24(7):86-93
基于国内外对氯离子侵蚀和混凝土碳化环境下钢筋锈蚀速率的最新研究成果,建立了混凝土构件在氯离子侵蚀下考虑坑蚀和在混凝土碳化下考虑平均锈蚀的弯曲抗力退化模型,用Monte Carlo方法和统计回归法编制了退化钢筋混凝土构件及系统的时变可靠度计算程序。以北京地区一座公路桥为算例,结果表明:在氯离子侵蚀下考虑坑蚀的桥梁承载能力时变可靠度在30年左右即下降到设计目标可靠度,在混凝土碳化下考虑平均锈蚀的桥梁承载能力时变可靠度在50年左右即下降到设计目标可靠度,从而需要补强,这表明考虑主筋锈蚀后我国钢筋混凝土公路桥一般达不到100年设计使用期;对因主筋锈蚀导致混凝土保护层胀裂而言,构件达到抗裂正常使用极限状态远远早于达到承载能力极限状态,建议将混凝土保护层开裂时间作为桥梁检查/维修参考点。  相似文献   

9.
When cement with mineral additions is employed, the carbonation resistance of mortar and concrete may be decreased. In this study, mortars containing mineral additions are exposed both to accelerated carbonation (1% and 4% CO2) and to natural carbonation. Additionally, concrete mixtures produced with different cements, water-to-cement ratios and paste volumes are exposed to natural carbonation. The comparison of the carbonation coefficients determined in the different exposure conditions indicates that mortar and concrete containing slag and microsilica underperform in the accelerated carbonation test compared to field conditions. The carbonation resistance in mortar and concrete is mainly governed by the CO2 buffer capacity per volume of cement paste. It can be expressed by the ratio between water added during production and the amount of reactive CaO present in the binder (w/CaOreactive) resulting in a novel parameter to assess carbonation resistance of mortar and concrete containing mineral additions.  相似文献   

10.
The use of new binders for structural concrete raises questions about the durability of reinforced concrete structures. Calcium sulfoaluminate cement (CSA) has become in recent years an environmentally-friendly alternative to ordinary Portland cement (OPC), but the protection capacity of CSA concrete in relation to the corrosion of embedded steel reinforcement needs to be studied. This paper describes a study on the corrosion behaviour of carbon steel embedded in concrete made with CSA-based binders. It is shown that the pore solution of sulfoaluminate concrete was sufficiently alkaline to passivate embedded carbon steel rebars. Compared to traditional Portland and Portland-limestone cements, CSA cement led to higher carbonation rate of concrete, but to lower corrosion rate of steel in carbonated concrete, likely due to the higher electrical resistivity. Corrosion rate was negligible up to 95% RH at 20 °C. Blending of CSA and OPC cements improved steel passivity and concrete resistance to carbonation.  相似文献   

11.
为了研究受力裂缝对混凝土内氯离子扩散的影响,对8根开裂(预制裂缝和受弯裂缝)的钢筋混凝土梁试件进行了盐溶液干湿循环试验;并采用半电池电位法和RCT(快速氯离子含量检测)法,分别对梁内钢筋的锈蚀状态以及各裂缝处氯离子含量进行了检测;最后采用ADINA有限元软件对开裂混凝土内氯离子的二维扩散行为进行模拟分析。试验和模拟结果表明:1)裂缝加速了氯离子的侵入,导致钢筋过早的开始锈蚀,且为局部氯离子的二维扩散提供了条件;2)裂缝宽度越大或间距越小,其对氯离子侵入引起的钢筋锈蚀影响程度越大;3)有限元模型的计算与试验结果吻合较好。  相似文献   

12.
Modelling lime mortar carbonation   总被引:1,自引:0,他引:1  
  相似文献   

13.
Corrosion of reinforcement is a serious problem and is the main cause of concrete structures deterioration costing millions of dollars even though the majority of such structures are at the early age of their expected service life. This paper presents the experimental results of damaged/repaired reinforced concrete beams. The experimental program consisted of reinforced concrete rectangular beam specimens exposed to accelerated corrosion. The corrosion rate was varied between 5% and 15% which represents loss in cross-sectional area of the steel reinforcement in the tension side. Corroded beams were repaired by bonding carbon fiber reinforced polymer (CFRP) sheets to the tension side to restore the strength loss due to corrosion. Different strengthening schemes were used to repair the damaged beams. Test results showed detrimental effect of corrosion on strength as well as the bond between steel reinforcement and the surrounding concrete. Corroded beams showed lower stiffness and strength than control (uncorroded) beams. However, strength of damaged beams due to corrosion was restored to the undamaged state when strengthened with CFRP sheets. On the other hand, the ultimate deflection of strengthened beams was less than ultimate deflection of un-strengthened beams.  相似文献   

14.
Corrosion of reinforced concrete structures is a major problem throughout the world, demanding significant amounts for repair and rehabilitation. Corrosion protection is commonly performed by coating the concrete or by using corrosion inhibitors. This paper describes the comparative evaluation of the effectiveness of an acrylic dispersion and an inorganic coating on silicate basis, of an alkanolamine-based corrosion inhibitor and of their combination, on reinforced mortar specimens partially immersed in 3.5% NaCl solution. The following techniques were used: strain gauges, measurements of the corrosion potential, the mass loss and the EIS of the reinforcing bars and measurements of the chloride diffusion and the carbonation depth in mortars. Results demonstrate that the simultaneous use of the alkanolamine-based corrosion inhibitor with the inorganic coating offers a protection degree comparable to that of the acrylic dispersion, which performs best in the presence of both chloride ions and carbon dioxide.  相似文献   

15.
为了研究敏化处理对Z3CN20-09M不锈钢高温水应力腐蚀行为的影响,使用敏化处理的Z3CN20-09M不锈钢制成U弯试样,并置于250、290及320℃的高温水中进行应力腐蚀开裂实验,采用扫描电镜观察了高温水实验后试样的氧化膜厚度以及应力腐蚀裂纹的萌生及扩展行为.结果表明:敏化处理增加了氧化膜的厚度,降低了耐蚀能力,使SCC敏感性增大;温度较高时,敏化处理的影响较大;铁素体相容易被侵蚀,大多数点蚀坑产生于铁素体中;SCC裂纹优先在点蚀坑底部和奥氏体/铁素体相界位置处形成;相界面对SCC裂纹的影响取决于SCC裂纹相对于相界面的取向,SCC裂纹扩展方向平行于相界面时裂纹易沿着相界扩展,SCC裂纹扩展垂直于相界面方向时相界面对裂纹扩展起阻碍作用.  相似文献   

16.
An instrumented rebar is presented which was designed to have a realistic mechanical performance and to provide location dependent measurements to assess the environment with regards to reinforcement corrosion. The instrumented rebar was constructed from a hollowed 10 mm nominal diameter standard rebar with 17 electronically isolated corrosion sensors. Instrumented and standard rebars were cast into concrete beams and bending cracks were induced and held open using steel frames. Epoxy impregnation was used to assess and compare cracks in the concrete around the instrumented and standard rebar. As bending-induced cracks reached the reinforcement, slip and separation occurred along the concrete–reinforcement interface. Cracks in the concrete surrounding standard and instrumented rebars are largely similar in appearance; however, sensors protruding from the instrumented rebar reduced the separation between the steel and concrete. Cracked beams with cast-in instrumented and standard rebars were ponded with a 10% chloride solution and the open circuit corrosion potential (OCP) of the 17 sensors was measured for up to 62 days. Measurements from the individual sensors indicate when and where active corrosion may be thermodynamically favored based upon the local environmental conditions. Results indicated the length along the instrumented rebar where active corrosion was thermodynamically favored increased with exposure time due to the increased aggressivity of the local environmental conditions.  相似文献   

17.
The ingress of chlorides in reinforced concrete leads to the onset of steel reinforcement corrosion and eventually compromises a structure’s integrity. To extend its service life and improve safety, it is crucial to develop sound repair strategies for our nation’s infrastructure. In this paper, results are presented for numerical simulations to study the effectiveness of fillers for repair of cracks in concrete, so as to delay the onset of corrosion in reinforcing steel. Concretes without cracks and with either a 50 μm or 500 μm wide crack located directly above the steel reinforcement are simulated, with the addition of silica fume, a corrosion inhibitor, or epoxy-coated reinforcement being considered as additional scenarios. The effectiveness of the crack filler depends not only on its inherent diffusivity with respect to chloride ions, but also on its ability to penetrate and fill the damaged zone or interface between the open crack region and the bulk concrete. Additional simulations indicate that using continuum models instead of models that include details of the rebar placement can lead to underestimating the chloride concentration and overestimating the service life. Experiments are needed to study the ingress of chlorides in damaged (interfacial) regions adjacent to the crack or at the reinforcement surface, as the local transport properties of these regions can significantly influence service life predictions.  相似文献   

18.
Reinforced concrete structures are frequently exposed to aggressive environmental conditions. Most notably, chloride ions from sea water or de-icing salts are potentially harmful since they promote corrosion of steel reinforcement. Concrete cover of sufficient quality and depth can ensure protection of the steel reinforcement. However, it is necessary to study the effects of material heterogeneity and cracking on chloride ingress in concrete. This is done herein by proposing a three-dimensional lattice model capable of simulating chloride transport in saturated sound and cracked concrete. Means of computationally determining transport properties of individual phases in heterogeneous concrete (aggregate, mortar, and interface), knowing the concrete composition and its averaged transport properties, are presented and discussed. Based on numerical experimentation and available literature, a relation between the effective diffusion coefficient of cracked lattice elements and the crack width was adopted. The proposed model is coupled with a lattice fracture model to enable simulation of chloride ingress in cracked concrete. The model was validated on data from the literature, showing good agreement with experimental results.  相似文献   

19.
The cracking and fracture of mortar   总被引:3,自引:0,他引:3  
The load-induced cracking of a small compact tension specimen of mortar was observed using a special loading device mounted in the specimen chamber of a scanning electron microscope. The crack was initiated at a load of 43.6 N and immediately extended about 12 mm, whereupon it became stable. Micromorphological aspects of the crack pattern are described in considerable detail. In general, it was observed that the crack geometry is complicated, with the crack path preferentially progressing at the interface between sand grains and cement paste, but not limited to these regions. A considerable amount of energy must be dissipated in creating the tortuous crack surface and in multiple or branch cracking. This technique permits resolution of much finer cracks than can be detected with ordinary optical methods.  相似文献   

20.
The corrosion behaviour of embedded steel was related to the composition of the pore phase in equilibrium with the hydrated phases and the porosity of the high alumina cement mortars subsequent to curing at 5,25 and 55 °C. The corrosion of reinforcements was evaluated by electrochemical techniques. The effect on corrosion of 3% by weight of cement of NaCl, added during the mixing process, and of the accelerated carbonation of mortars in CO2 atmosphere were also determined. The pH value and the chemical composition of pore fluid of plain high alumina cement (HAC) mortar cured at all three temperatures suggested that the embedded steel was in a passivated state. The resistance of HAC to carbonation and its greater potential for chloride binding by chloroaluminate formation are believed to make HAC inherently more protective to steel, relative to normal Portland cement, during ingress of chloride from external sources. High corrosion rates reported in literature for steel embedded in HAC may be attributable to bad practice, not to lack of passivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号