首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a fixed-time cooperative guidance law for leader-following missiles, comprising one leader missile with the target seeker and several seeker-less follower missiles. The aim is to achieve a simultaneous attack on a maneuvering target at desired impact angles. First, a guidance law with impact angle control for the leader missile against a maneuvering target is proposed based on nonsingular fast terminal sliding mode (NFTSM) control algorithm. Then, the design of cooperative guidance law for the follower missiles is composed of two parts: along the follower-to-leader line of sight (LOS) direction, the guidance command derived from bi-homogeneous property is designed to ensure that the follower-leader ranges keep proportional consensus with the range-to-go of the leader missile, thus avoiding the estimation of time-to-go ( ); in the normal follower-to-leader LOS direction, considering the relative impact angle constraints which is determined by the leader LOS angle, the guidance command is proposed based on predefined-time sliding mode control method. What's more, a distributed fixed-time observer is designed for the follower missiles to compensate for unobtainable leader missile information. The fixed-time stability of the proposed methods is demonstrated using the Lyapunov theory and bi-homogeneous property. Finally, simulation results confirm the effectiveness and superiority of the proposed fixed-time cooperative guidance law with leader-following strategy.  相似文献   

2.
The finite-time formation problem of multiple agents aims to find a control protocol to guarantee finite-time consensus, in which every agent can be in the right position and keep in the given formation configuration efficiently. However, it is hard to achieve a stable state if only by setting one virtual leader in multiple tasks system. This paper presents a formation controller design for a second-order multiple agents to address the finite-time formation problem. In the procedure, each agent has a virtual leader, and then a control law is designed so that the agents can keep pace with their virtual leaders in terms of speed and position. Accordingly, the controller can ensure that the relative positions among different agents and the trajectory of the whole formation can be specified in advance. Moreover, since the closed-loop system is finite-time stable, which implies that the required formation is attainable without a deviation in finite time. Finally, the stability analysis is proved by applying the graph theory, Lyapunov stability theory and homogeneous system theory. The effectiveness of the algorithm is demonstrated by numerical simulations.  相似文献   

3.
This article studies the almost-sure and the mean-square consensus control problems of second-order stochastic discretetime multi-agent systems with multiplicative noises. First, a control law based on the absolute velocity and relative position information is designed. Second, considering the existence of multiplicative noises and nonlinear terms with Lipschitz constants, the consensus control problem is solved through the use of a degenerated Lyapunov function. Then, for the linear second-order multi-agent systems, some explicit consensus conditions are provided. Finally, two sets of numerical simulations are performed.  相似文献   

4.
在舰炮网络化弹药打击近岸机动目标的末制导段,提出了一种考虑攻击角约束的有限时间分布式模糊协同制导律.构建网络化弹药–目标相对运动模型,设计扩张状态观测器估计目标的切向、法向加速度.在视线切向,为保证命中时刻在有限时间内趋于一致,采用积分滑模设计分布式有限时间协同制导律;在视线法向,为在有限时间内零化视线角误差、视线角速率并改善控制指令终端发散现象,采用非奇异终端滑模设计两阶段制导律.为削弱控制指令抖振、补偿干扰,设计模糊自适应系统,并通过Lyapunov理论证明了全系统状态的一致最终有界性与有限时间收敛性.仿真实验表明:该制导律使网络化弹药在打击机动形式不同的目标时,均具备较好的协同制导性能.  相似文献   

5.
We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol. In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively within this domain. The creation of these loci is done in a new surrogate coordinate system, called the ‘spectral delay space (SDS)’. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads to a paradoxical control design concept, called the ‘delay scheduling’, which highlights the fact that the group behaviour may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.  相似文献   

6.
This paper proposes a sliding‐mode control (SMC) method to achieve practical cooperative consensus tracking for a network of multiple nonholonomic wheeled mobile robots (MNWMRs) with input disturbances. A novel SMC surface under the nonholonomic constraints is first formulated to characterize the network communication interactions among the networked robots under the framework of polar coordinates. A unified distributed consensus tracking strategy is then proposed by systematically combining a position controller and a direction controller. Furthermore, a simple yet general criterion is derived to achieve the desired practical consensus of trajectory tracking and posture stabilization for MNWMRs. In particular, for a specific common consensus trajectory, the complete asymptotic tracking in heading direction can be fully guaranteed when the perfect asymptotic position‐tracking errors are realized. Accordingly, the developed consensus tracking strategy for MNWMRs demonstrates some advantages of control performance including stability, robustness, and effectiveness over the existing control method proposed for their single‐robot counterparts. Some comparative simulation results are given to confirm the effectiveness of the proposed cooperative consensus control method.  相似文献   

7.
颜鸿涛  许勇  贾涛  张可  杜俊杰 《控制与决策》2023,38(4):1074-1084
针对固定翼无人机密集编队穿越门框的任务场景,提出系统编队穿越方案.首先,根据机载相机测量信息,提出基于视线角的制导策略,能够快速调整机头指向对准门框;其次,为了提高成功穿越的可靠性以及解决视线遮挡问题,提出基于门框位置解算的协同制导策略;然后,针对复赛存在导航干扰情况,在水平方向上设计基于特征点测量的惯性导航算法,在垂直方向采用基于微分滤波的气压高度和升降率提取方法,并且利用视线角穿越门框,设计基于距离控制的编队控制律;最后,设计相应的固定翼无人机系统,并以7机编队的形式参加了2021年“无人争锋”极速穿越比赛,参赛结果验证了所提出极速穿越方法的有效性.  相似文献   

8.
本文以多枚空空导弹逆轨拦截高速运动目标为背景,提出了一种以协同探测为终端约束的分布式协同中制导律.通过对误差源和误差传递链路进行分析,建立了中末交班概率计算模型,基于虚拟导引点研究了协同视场拼接方法.在视线法向,针对位置协同和角度协同等约束条件,设计了基于高斯伪谱法的最优制导律.在视线方向,基于二阶多智能体一致性理论,设计了分布式时间协同制导律,构造李雅普诺夫泛函证明了该方法可使系统在有限时间达到稳定,并推导出了一致性时间上界.仿真结果表明该制导律可使多弹以各自期望的视线角同时到达指定交班区域,实现视场拼接、协同探测的需求,有效提高了中末交班概率.  相似文献   

9.
In this article, the problem of event‐triggered‐based fixed‐time sliding mode cooperative control is addressed for a class of leader‐follower multiagent networks with bounded perturbation. First, a terminal integral sliding mode manifold with fast convergent speed is designed. Then, a distributed consensus tracking control strategy based on event‐triggered and sliding mode control is developed that guarantees the multiagent networks achieve consensus within a fixed time which is independent of initial states of agents in comparison with the finite‐time convergence. Furthermore, the update frequency of control law can be considerably reduced and Zeno behavior can be removed by utilizing the proposed event‐triggered control algorithm. Simulation examples are used to show the effectiveness of the new control protocol.  相似文献   

10.
This paper develops an event-triggered-based finite-time cooperative path following (CPF) control scheme for underactuated marine surface vehicles (MSVs) with model parameter uncertainties and unknown ocean disturbances. First, a finite-time extended state observer (FTESO) is proposed, in which the FTESO can estimate the velocities and compound disturbances in finite time. Then, the finite-time LOS guidance law based on velocity estimation values is designed to obtain the desired surge velocity and the desired yaw rate. In order to realize the cooperative control of multiple paths in finite time, the cooperative control law for the path variable is designed. In addition, the relative threshold event-triggered control (ETC) mechanism is incorporated into the formation control algorithm, and an event-triggered-based finite-time CPF controller is designed, which not only effectively reduces the update frequency of controller and the mechanical loss of actuator but also improves the control performance of system. Furthermore, by using homogeneous method, Lyapunov theory, and finite-time stability theory, it is proved that under the proposed finite-time CPF control scheme, the formation errors can converge to a small neighborhood around origin in finite time. Finally, numerical simulation results illustrate the effectiveness of the proposed control scheme.  相似文献   

11.
This paper addresses a problem of cooperative formation control of a network of self-deployed autonomous agents. We propose a decentralized motion coordination control for the agents so that they collectively move in a desired geometric pattern from any initial position. There are no predefined leaders in the group and only local information is required for the control. The control algorithm is developed using the ideas of information consensus, and its effectiveness is illustrated via numerical simulations.  相似文献   

12.
This paper presents consensus algorithms by integrating cooperative control and adaptive control laws for multi-agent systems with unknown nonlinear uncertainties. An ideal multi-agent system without uncertainties is introduced first. The cooperative control law, based on an artificial potential function, is designed to make the ideal multi-agent system achieve consensus under a fixed and connected undirected graph. The presence of uncertainties will degenerate the performance, or even destabilize the whole multi-agent system. The L 1 adaptive control law is therefore introduced to handle unknown nonlinear uncertainties. Two different consensus cases are considered: 1) normal consensus—where all agents reach an agreement on an initially undetermined position and velocity, and 2) consensus with a virtual leader—where all agents’ states converge to the virtual leader’s states. Under a fixed and connected undirected graph, the presented consensus algorithms enable the real multi-agent system to stay close to the ideal multi-agent system which achieves consensus with or without a virtual leader. Simulation results of 2-D consensus with nonlinear uncertainties are provided to demonstrate the presented algorithms.  相似文献   

13.
谢光强  戴金刚  李杨 《计算机应用研究》2021,38(10):2941-2947,2973
针对由联网自动化车辆(connected and automated vehicle,CAV)组成的双编队车辆换道问题进行了研究,提出了一种基于事件触发的分布式换道决策模型.该模型针对双编队系统设计了一种编队内和编队间的一致性控制协议;同时,为了减少CAV车辆控制器的频繁更新,设计了一种基于组合测量方式的事件触发器,并给出Lyapunov函数证明了算法的稳定性且不存在Zeno行为.仿真结果表明,所设计的控制协议能够使双编队系统收敛一致,有效降低CAV控制器的更新频率,减少系统能耗.通过模型对比,在证明所提决策模型有效性的同时,系统能够更快地收敛.  相似文献   

14.
许洋  秦小林  刘佳  张力戈 《计算机应用》2020,40(5):1515-1521
针对多无人机(UAV)协同航迹规划中因编队队形约束而忽略部分较窄通道的问题,提出了一种基于自适应分布式模型预测控制的快速粒子群优化(ADMPC-FPSO)方法。该方法利用领航跟随法和虚拟结构法相结合的编队策略构造出虚拟编队引导点,以完成自适应编队协同控制任务。根据模型预测控制的思想,结合分布式控制方法,将协同航迹规划转化为滚动在线优化问题,且以最小距离等性能指标为代价函数。通过设计评价函数准则,使用变权重快速粒子群优化算法对问题进行求解。仿真结果表明,通过所提算法能够有效实现多无人机协同航迹规划,并可根据环境变化快速完成自适应编队变换,同时较传统编队策略代价更低。  相似文献   

15.
This paper poses the enclosing control problem with identical geometry for a group of targets which are either stationary or moving and offers consensus-based distributed control protocols. An estimator is first introduced to estimate the central position of the targets. We then propose a target-enclosing control law with velocity information based on the centre estimating algorithm and consensus theory. A target-enclosing control law without the velocity information is further designed. The Lyapunov theory and Lasalle’s invariance principle are applied to show the convergence of the proposed control algorithms. Finally, numerical simulations are given to illustrate the effectiveness of our proposed strategy.  相似文献   

16.
This paper proposes cooperative control protocols for a group of unmanned vehicles to make a stable formation around a maneuvering target. The control protocols are proposed on the basis of heterogeneous communication networks, which represents more challenging and generalized situations. Two different scenarios are considered. Separate control protocols are developed for each case. In both scenarios, agents do not have relative position, velocity, and acceleration measurements as feedback. In the first scenario, each agent uses its own position and velocity measurement in a consensus algorithm. In the second scenario, each agent needs only its own position information for the consensus algorithm. For both protocols, agents compute virtual estimates of a target's position and velocity and exchange these among the neighbors. Three different communication networks are used for exchanging two virtual estimates calculated by each agent and a time derivative of one virtual estimate. Each interagent communication network is represented by a fixed, undirected, and connected graph. Furthermore, it is considered that at least one agent receives the position, velocity, and acceleration information of the maneuvering target. It is not necessary that the agent receiving the target's position and the agent receiving the velocity and/or the acceleration information of the target be the same. However, the target does not receive any information about any agent. Stability of the formation is analyzed by using Barbalat's lemma. It is also shown that, despite the large difference in received information, the acceleration of the agents remains bounded for all time. The performance of the proposed formation control protocols is illustrated through numerical simulations.  相似文献   

17.
We propose an algorithm for consensus of second-order sampled-data multi-agent systems in the presence of misbehaving agents. Each normal agent updates its states following a predetermined control law based on local information while some malicious agents make updates arbitrarily. The normal agents do not know the global topology of the network, but have prior knowledge on the maximum number of malicious agents in their neighborhood. Under the assumption that the network has sufficient connectivity in terms of robustness, we develop a resilient algorithm where each agent ignores the neighbors which have large and small position values to avoid being influenced by malicious agents.  相似文献   

18.
In this paper, four scenarios are presented for cooperative source seeking and contour mapping of a radiative signal field by multiple UAV formations. A source seeking strategy is adopted with saturation, and then it is modified to achieve contour mapping of the signal field with the moving source situation considered. A formation controller used for consensus problem is simplified and applied in the scenarios to stabilize the multiple UAV formation flight during source detection. The contour mapping strategy and the formation control algorithm are combined to guarantee stable source seeking and contour mapping in both circular flight path and square flight path via multiple UAV formations.  相似文献   

19.
杨盼  毕文豪  张安 《控制与决策》2022,37(11):2925-2933
针对二阶线性多智能体系统的分群一致控制问题,考虑智能体通信拓扑同时包含协作和对抗关系,提出一种基于事件驱动控制的有限时间分布式领航跟随分群一致性算法,该算法可使多智能体系统在有限时间内实现分群一致,即各子组内的智能体实现状态一致,不同子组收敛至不同一致状态.采用事件驱动控制机制,设计事件驱动函数及事件触发条件,降低智能体控制器更新频率,减少系统能耗.基于代数图论和李雅普诺夫稳定性理论推导出系统的有限时间稳定性条件,通过巧妙构造Lyapunov函数,给出系统有限收敛时间的显式估计,同时证明在所提出的事件驱动机制下,每个智能体相邻触发时间间隔有严格的正下界,即避免了芝诺行为.仿真实验验证了所提出的有限时间事件驱动分群一致控制算法的有效性.  相似文献   

20.
Consensus problem is investigated for the multi-agent systems with agents?? dynamics modeled by single-input and single output linear time-invariant proper system, and asynchronously-coupled consensus algorithm is adopted for the system subjected to input delay and communication delay. Sufficient conditions, which depend on the input delay and the communication delay, are obtained for the agents converging to a stationary consensus asymptotically by using linear fractional transformation and small-gain theorem of the frequency-domain analysis. Moreover, the results are extended to get the consensus conditions for second-order multi-agent systems with input delay and communication delay under asynchronously-coupled consensus algorithm, which is composed of the position and the velocity consensus coordination control parts. Simulation illustrates the correctness of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号