首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photofermentative H2 production at higher rate is desired to make H2 viable as cheap energy carrier. The process is influenced by C/N composition, pH levels, temperature, light intensity etc. In this study, Rhodobacter sphaeroides strain O.U 001 was used in the annular photobioreactor with working volume 1 L, initial pH of 6.7 ± 0.2, inoculum age 36 h, inoculum volume 10% (v/v), 250 rpm stirring and light intensity of 15 ± 1.1 W m−2. The effect of parameters, i.e. variation in concentration of DL malic acid, L glutamic acid and temperature on the H2 production was noted using three factor three level full factorial designs. Surface and contour plots of the regression models revealed optimum H2 production rate of 7.97 mL H2 L−1 h−1 at 32 °C with 2.012 g L−1 DL malic acid and 0.297 g L−1 L glutamic acid, which showed an excellent correlation (99.36%) with experimental H2 production rate of 7.92 mL H2 L−1 h−1.  相似文献   

2.
The aim of this study was to promote biohydrogen production in an thermophilic anaerobic fluidized bed reactor (AFBR) at 55 °C using a mixture of sugar cane stillage and glucose at approximately 5000–5300 mg COD L−1. During a reduction in the hydraulic retention time (HRT) from 8, 6, 4, 2 and 1 h, H2 yields of 5.73 mmol g CODadded−1 were achieved (at HRT of 4 h, with organic loading rate of 52.7 kg COD m−3 d−1). The maximum volumetric H2 production of 0.78 L H2 h−1 L−1 was achieved using stillage as carbon source. In all operational phases, the H2 average content in the biogas was between 31.4 and 52.0%. Butyric fermentation was the predominant metabolic pathway. The microbial community in accordance with the DGGE bands profile was found similarity coefficient between 91 and 95% without significant changes in bacterial populations after co-substrate removal. Bacteria like Thermoanaerobacterium sp. and Clostridium sp. were identified.  相似文献   

3.
The present study aimed to evaluate the hydrogen production of a microbial consortium using different concentrations of sugarcane vinasse (2–12 g COD L−1) at 37 °C and 55 °C. In mesophilic tests, the increase in vinasse concentration did not significantly impact the hydrogen yield (HY) (from 1.72 to 2.23 mmol H2 g−1 CODinfluent) but had a positive effect on the hydrogen production potential (P) and hydrogen production rate (Rm). On the other hand, the increase in the substrate concentration caused a drop in HY from 2.31 to 0.44 mmol H2 g−1 CODinfluent in the tests performed at 55 °C with vinasse concentrations from 2 to 12 g COD L−1. The mesophilic community was composed of different species within the Clostridium genus, and the thermophilic community was dominated by organisms affiliated with the Thermoanaerobacter genus. Not all isolates affiliated with the Clostridium genus contributed to a high HY, as the homoacetogenic pathway can occur.  相似文献   

4.
A MmNi4.25Al0.75 intermetallic was obtained by low energy mechanical alloying and low temperature heating at 600 °C for 24 h under Ar. The intermetallic was recovered from milling chamber using ethyl alcohol, dried, stored and handled under air at room conditions. Structure was characterized by XRD. A maximum stability temperature of 160 °C was obtained from non-isothermal DSC measurement under air. The kinetics of oxidation at 200 °C was analyzed. A maximum reaction degree (α = 0.1) was obtained after 2500 s of treatment. The hydrogen sorption properties of samples were studied by volumetric measurements. Hydrogen maximum mass percent capacity (mass %) was reached in less than 300 s. The thermodynamic sorption properties were measured. Values of ΔHf = −29 ± 2 kJ mol−1 and ΔSf = 197 ± 10 J mol−1 K−1 were obtained for absorption process and ΔHd = 28 ± 2 kJ mol−1 and ΔSd = 189 + 10 J mol−1 K−1 were obtained for desorption process. From these results, a one-stage of thermal compression of hydrogen is proposed with a standard compression ratio (Rc) of 5.71 in the 25–80 °C range.  相似文献   

5.
This paper reports investigations carried out to determine the optimum culture conditions for the production of hydrogen with a recently isolated strain Clostridium butyricum CWBI1009. The production rates and yields were investigated at 30 °C in a 2.3 L bioreactor operated in batch and sequenced-batch mode using glucose and starch as substrates. In order to study the precise effect of a stable pH on hydrogen production, and the metabolite pathway involved, cultures were conducted with pH controlled at different levels ranging from 4.7 to 7.3 (maximum range of 0.15 pH unit around the pH level). For glucose the maximum yield (1.7 mol H2 mol−1 glucose) was measured when the pH was maintained at 5.2. The acetate and butyrate yields were 0.35 mol acetate mol−1 glucose and 0.6 mol butyrate mol−1 glucose. For starch a maximum yield of 2.0 mol H2 mol−1 hexose, and a maximum production rate of 15 mol H2 mol−1 hexose h−1 were obtained at pH 5.6 when the acetate and butyrate yields were 0.47 mol acetate mol−1 hexose and 0.67 mol butyrate mol−1 hexose.  相似文献   

6.
The effect of culture parameters on hydrogen production using strain GHL15 in batch culture was investigated. The strain belongs to the genus Thermoanaerobacter with 98.9% similarity to Thermoanaerobacter yonseiensis and 98.5% to Thermoanaerobacter keratinophilus with a temperature optimum of 65–70 °C and a pH optimum of 6–7. The strain metabolizes various pentoses, hexoses, and disaccharides to acetate, ethanol, hydrogen, and carbon dioxide. However substrate inhibition was observed above 10 mM glucose concentration. Maximum hydrogen yields on glucose were 3.1 mol H2 mol−1 glucose at very low partial pressure of hydrogen. Hydrogen production from various lignocellulosic biomass hydrolysates was investigated in batch culture. Various pretreatment methods were examined including acid, base, and enzymatic (Celluclast® and Novozyme 188) hydrolysis. Maximum hydrogen production (5.8–6.0 mmol H2 g−1 dw) was observed from Whatman paper (cellulose) hydrolysates although less hydrogen was produced by hydrolysates from other examined lignocellulosic materials (maximally 4.83 mmol H2 g−1 dw of grass hydrolysate). The hydrogen yields from all lignocellulosic hydrolysates were improved by acid and alkaline pretreatments, with maximum yields on grass, 7.6 mmol H2 g−1 dw.  相似文献   

7.
Alternative fuel sources have been extensively studied. Hydrogen gas has gained attention because its combustion releases only water, and it can be produced by microorganisms using organic acids as substrates. The aim of this study was to enrich a microbial consortium of photosynthetic purple non-sulfur bacteria from an Upflow Anaerobic Sludge Blanket reactor (UASB) using malate as carbon source. After the enrichment phase, other carbon sources were tested, such as acetate (30 mmol l−1), butyrate (17 mmol l−1), citrate (11 mmol l−1), lactate (23 mmol l−1) and malate (14.5 mmol l−1). The reactors were incubated at 30 °C under constant illumination by 3 fluorescent lamps (81 μmol m−2 s−1). The cumulative hydrogen production was 7.8, 9.0, 7.9, 5.6 and 13.9 mmol H2 l−1 culture for acetate, butyrate, citrate, lactate and malate, respectively. The maximum hydrogen yield was 0.6, 1.4, 0.7, 0.5 and 0.9 mmol H2 mmol−1 substrate for acetate, butyrate, citrate, lactate and malate, respectively. The consumption of substrates was 43% for acetate, 37% for butyrate, 100% for citrate, 49% for lactate and 100% for malate. Approximately 26% of the clones obtained from the Phototrophic Hydrogen-Producing Bacterial Consortium (PHPBC) were similar to Rhodobacter, Rhodospirillum and Rhodopseudomonas, which have been widely cited in studies of photobiological hydrogen production. Clones similar to the genus Sulfurospirillum (29% of the total) were also found in the microbial consortium.  相似文献   

8.
Photofermentative hydrogen production is influenced by several parameters, including feed composition, pH levels, temperature and light intensity. In this study, experimental results obtained from batch cultures of Rhodobacter capsulatus DSM 1710 were analyzed to locate the maximum levels for the rate and yield of hydrogen production with respect to temperature and light intensity. For this purpose, a 3k general full factorial design was employed, using temperatures of 20, 30 and 38 °C and light intensities of 100, 200 and 340 W/m2. ANOVA results confirmed that these two parameters significantly affect hydrogen production. Surface and contour plots of the regression models revealed a maximum hydrogen production rate of 0.566 mmol H2/L/h at 27.5 °C and 287 W/m2 and a maximum hydrogen yield of 0.326 mol H2/mol substrate at 26.8 °C and 285 W/m2. Validation experiments at the calculated optima supported these findings.  相似文献   

9.
A high-performance organosilica membrane was prepared via sol–gel processing for use in methylcyclohexane (MCH) dehydrogenation to produce high-purity hydrogen. The membrane showed a high H2 permeance of 1.29 × 10−6 mol m−2 s−1 Pa−1, with extremely high H2/C3H8 and H2/SF6 selectivities of 6680 and 48,900, respectively, at 200 °C. The extraction of hydrogen from the membrane reactor led to the MCH conversion higher than the thermodynamic equilibrium, with almost pure hydrogen obtained in the permeate stream without considering the effect of carrier gas and sweep gas in the membrane reactor, and the organosilica membrane reactor was very stable under the reaction conditions employed.  相似文献   

10.
K2NiF4-type structure oxides La2Cu1−xCoxO4 (x = 0.1, 0.2, 0.3) are synthesized and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). The materials are characterized by XRD, SEM and electrochemical impedance spectrum (EIS), respectively. The results show that no reaction occurs between La2Cu1−xCoxO4 electrode and Ce0.9Gd0.1O1.95 (CGO) electrolyte at 1000 °C. The electrode forms good contact with the electrolyte after sintering at 800 °C for 4 h in air. The electrode properties of La2Cu1−xCoxO4 are studied under various temperatures and oxygen partial pressures. The optimum composition of La2Cu0.8Co0.2O4 results in 0.51 Ω cm2 polarization resistance (Rp) at 700 °C in air. The rate limiting step for oxygen reduction reaction (ORR) is the charge transfer process. La2Cu0.8Co0.2O4 cathode exhibits the lowest overpotential of about 50 mV at a current density of 48 mA cm−2 at 700 °C in air.  相似文献   

11.
Elevated temperatures (52, 60 and 65 °C) were used to enrich hydrogen producers on cellulose from cow rumen fluid. Methanogens were inhibited with two different heat treatments. Hydrogen production was considerable at 60 °C with the highest H2 yield of 0.44 mol-H2 mol-hexose−1 (1.93 mol-H2 mol-hexose-degraded−1) as obtained without heat treatment and with acetate and ethanol as the main fermentation products. H2 production rates and yields were controlled by cellulose degradation that was at the highest 21%. The optimum temperature and pH for H2 production of the rumen fluid enrichment culture were 62 °C and 7.3, respectively. The enrichments at 52 and 60 °C contained mainly bacteria from Clostridia family. At 52 °C, the bacterial diversity was larger and was not affected by heat treatments. Bacterial diversity at 60 °C remained similar between heat treatments, but decreased during enrichment. At 60 °C, the dominant microorganism was Clostridium stercorarium subsp. leptospartum.  相似文献   

12.
Pr2−xSrxNiO4 (PSNO, x = 0.3, 0.5 and 0.8) cathode materials for intermediate-temperature solid oxide fuel cell (IT-SOFC) were synthesized by a glycine-nitrate process using Pr6O11, Ni(NO3)2·6H2O and SrCO3 powders as raw materials. Phase structure of the synthesized powders was characterized by X-ray diffraction analysis (XRD). Microstructure of the sintered PSNO samples was observed and thermal expansion coefficient (TEC) and electrical conductivity were investigated. Electrochemical impedance spectroscopy (EIS) measurement of the PSNO materials on Sm0.2Ce0.8O1.9 (SCO) electrolyte was carried out, and single cells based on the PSNO cathodes were also assembled and their performances were tested. The results show that the synthesized PSNO powders have pure K2NiF4-type structure and the PSNO materials are chemically stable with Sm0.2Ce0.8O1.9 (SCO) electrolyte. The sintered PSNO samples have porous and fine microstructure with pore size smaller than 1 μm. Average thermal expansion coefficient of the PSNO materials is about 12–13 × 10−6 K−1 at 200–800 °C and the electrical conductivity is in the range of 70–120 Scm−1 at 800 °C. Area specific resistance (ASR) of the Pr2−xSrxNiO4 materials on SCO electrolyte is 0.407 Ωcm2, 0.126 Ωcm2 and 0.112 Ωcm2 for x = 0.3, 0.5 and 0.8 at 800 °C, respectively. Maximum open circuit voltage (OCV) and power density of the single NiO-SCO/SCO/PSNO cells are 0.75 V and 298 mWcm−2 at 700 °C, respectively, which indicates that Pr2−xSrxNiO4 may be a potential cathode material for IT-SOFC.  相似文献   

13.
Light-dependent hydrogen production by platinized Photosystem I isolated from the cyanobacterium Thermosynechococcus elongatus BP-1 was optimized using response surface methodology (RSM). The process parameters studied included temperature, light intensity and wavelength, and platinum salt concentration. Application of RSM generated a model that agrees well with the data for H2 yield (R2 = 0.99 and p < 0.001). Significant effects on the total H2 yield were seen when the platinum salt concentration and temperature were varied during platinization. However, light intensity during platinization had a minimal effect on the total H2 yield within the region studied. The values of the parameters used during the platinization that optimized the production of H2 were light intensity of 240 μE m−2 s−1, platinum salt concentration of 636 μM and temperature of 31 °C. A subsequent validation experiment at the predicted conditions for optimal process yield gave the maximum H2 yield measured in the study, which was 8.02 μmol H2 per mg chlorophyll.  相似文献   

14.
Solid Oxide Electrolyzer Cells (SOECs) are promising energy devices for the production of syngas (H2/CO) by H2O and/or CO2 electrolysis. Here we developed a Cu–Ce0.9Gd0.1O2−δ/Ce0.8Gd0.2O2−δ/Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Ce0.8Gd0.2O2−δ cell and performed H2O and CO2 electrolysis experiments in the intermediate temperature range (600°C–700 °C). As a baseline, the cell was first tested in fuel cell operation mode; the sample shows a maximum power density peak of 104 mW cm−2 at 700 °C under pure hydrogen and air. H2O electrolysis testing revealed a steady production of hydrogen with a Faraday's efficiency of 32% at 700 °C at an imposed current density of −78 mA cm−2. CO production was observed during CO2 electrolysis but higher cell voltages were required. A lower efficiency of about 4% was obtained at 700 °C at an imposed current density of −660 mA cm−2. These results confirm that syngas production is feasible by water and carbon dioxide electrolysis but further improvements from both the manufacturing and the electrocatalytic aspects are needed to reach higher yields and efficiencies.  相似文献   

15.
Rhodobacter sphaeroides O.U. 001 (concentration of inoculum-0.36 g dry wt/l) and brewery wastewaters were applied in photobiogeneration of hydrogen under illumination of 116 W/m2. The best results were obtained with filtered wastewaters sterilized at 120 °C for 20 min and maximal concentration of waste in medium equal 10% v/v. The main product in generated biogas was hydrogen (90%). After sterilization the amount of generated hydrogen was tripled (from 0.76 to 2.2 l H2/l medium), whereas waste concentration of 10% v/v resulted in the best substrate yield (0.22 l H2/l of waste). Under these conditions the amount of generated hydrogen was 2.24 l H2/l medium and light conversion efficiency reached value of 1.7%. The modified Gompertz equations served in modeling of the kinetics of the studied process.  相似文献   

16.
Galliosilicate glasses were developed for sealing intermediate temperature planar solid oxide fuel cell (SOFC) stacks. Candidate sealing glasses were identified for use at operating temperatures of 750 °C and at 850 °C after assessing flow behavior, thermal expansion properties, and crystallization behavior. A series of non-alkali glasses was identified for use at 750 °C within a strontium boro-galliosilicate compositional region that exhibited glass transition temperatures (Tg) between 658 and 675 °C and coefficients of thermal expansion (CTE) between 8 and 9.4 × 10−6 K−1. Glass frits and powders flowed below 850 °C and did not crystallize dramatically after 500 h at 750 °C. Several glasses containing 5 mol% mixed alkali were identified in a strontium boro-galliosilicate compositional region for use at 850 °C. The glasses exhibited Tg between 615 and 620 °C with CTE from 7.8 to 9.7 × 10−6 K−1. Glass frits flowed well below 850 °C and retained remnant glass phase after partial crystallization at 850 °C. The galliosilicate glasses developed in this work enable viscous sealing of SOFC stacks.  相似文献   

17.
Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO2-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark–photo fermentation was stably operated for nearly 80 days, giving a maximum H2 yield of 11.61 mol H2/mol sucrose and a H2 production rate of 673.93 ml/h/l. The biogas produced from the sequential dark–photo fermentation (containing ca. 40.0% CO2) was directly fed into a microalga culture (Chlorella vulgaris C–C) cultivated at 30 °C under 60 μmol/m2/s illumination. The CO2 produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C–C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid.  相似文献   

18.
Photoproduction of H2 gas was examined in the Chlamydomonas reinhardtii tla1 strain, CC-4169, containing a truncated light-harvesting antenna, along with its parental CC-425 strain. Although enhanced photosynthetic performance of truncated antenna algae has been demonstrated previously (Polle et al. Planta 2003; 217:49-59), improved H2 photoproduction has yet to be reported. Preliminary experiments showed that sulfur-deprived, suspension cultures of the tla1 mutant could not establish anaerobiosis in a photobioreactor, and thus, could not photoproduce H2 gas under conditions typical for the sulfur-deprived wild-type cells (Kosourov et al. Biotech Bioeng 2002; 78:731-40). However, they did produce H2 gas when deprived of sulfur and phosphorus after immobilization within thin (∼300 μm) alginate films. These films were monitored for long-term H2 photoproduction activity under light intensities ranging from 19 to 350 μE m−2 s−1 PAR. Both the tla1 mutant and the CC-425 parental strain produced H2 gas for over 250 h under all light conditions tested. Relative to the parental strain, the CC-4169 mutant had lower maximum specific rates of H2 production at low and medium light intensities (19 and 184 μE m−2 s−1), but it exhibited a 4-times higher maximum specific rate at 285 μE m−2 s−1 and an 8.5-times higher rate at 350 μE m−2 s−1 when immobilized at approximately the same cell density as the parental strain. As a result, the CC-4169 strain accumulated almost 4-times more H2 than CC-425 at 285 μE m−2 s−1 and over 6-times more at 350 μE m−2 s−1 during 250-h experiments. These results are the first demonstration that truncating light-harvesting antennae in algal cells can increase the efficiency of H2 photoproduction in mass culture at high light intensity.  相似文献   

19.
Nanostructured MgH2/0.1TiH2 composite was synthesized directly from Mg and Ti metal by ball milling under an initial hydrogen pressure of 30 MPa. The synthesized composite shows interesting hydrogen storage properties. The desorption temperature is more than 100 °C lower compared to commercial MgH2 from TG-DSC measurements. After desorption, the composite sample absorbs hydrogen at 100 °C to a capacity of 4 mass% in 4 h and may even absorb hydrogen at 40 °C. The improved properties are due to the catalyst and nanostructure introduced during high pressure ball milling. From the PCI results at 269, 280, 289 and 301 °C, the enthalpy change and entropy change during the desorption can be determined according to the van’t Hoff equation. The values for the MgH2/0.1TiH2 nano-composite system are 77.4 kJ mol−1 H2 and 137.5 J K−1 mol−1 H2, respectively. These values are in agreement with those obtained for a commercial MgH2 system measured under the same conditions. Nanostructure and catalyst may greatly improve the kinetics, but do not change the thermodynamics of the materials.  相似文献   

20.
Dark fermentative hydrogen production by a hot spring culture was studied from different sugars in batch assays and from xylose in continuous stirred tank reactor (CSTR) with on-line pH control. Batch assays yielded hydrogen in following order: xylose > arabinose > ribose > glucose. The highest hydrogen yield in batch assays was 0.71 mol H2/mol xylose. In CSTR the highest H2 yield and production rate at 45 °C were 1.97 mol H2/mol xylose and 7.3 mmol H2/h/L, respectively, and at 37 °C, 1.18 mol H2/mol xylose and 1.7 mmol H2/h/L, respectively. At 45 °C, microbial community consisted of only two bacterial strains affiliated to Clostridium acetobutulyticum and Citrobacter freundii, whereas at 37 °C six Clostridial species were detected. In summary hydrogen yield by hot spring culture was higher with pentoses than hexoses. The highest H2 production rate and yield and thus, the most efficient hydrogen producing bacteria were obtained at suboptimal temperature of 45 °C for both mesophiles and thermophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号