首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper describes self-ignition combustion synthesis (SICS) of LaNi5 in a pressurized hydrogen atmosphere using metallic calcium as both the reducing agent and the heat source. In this study, the effects of hydrogen on the ignition temperature and the hydrogenation properties of the products were mainly examined. In the experiments, La2O3, Ni, and Ca were dry-mixed in the molar ratio of 1:10:6 and then heated up at a hydrogen pressure of 1.0 MPa until the ignition due to the hydrogenation of calcium. For the sake of comparison, the same experiments were performed in a normal argon atmosphere. The results showed that the ignition temperature was drastically lowered by hydrogen; it was only 600 K in the case of hydrogen as compared to 1100 K in the case of argon. The products also exhibited high initial activity and hydrogen storage capacity of 1.54 mass%. The proposed method offers many benefits for using cost-effective rare-earth oxide, saving productive time and energy, improving initial activity of the product and applying to any AB5-type hydrogen storage alloy.  相似文献   

2.
Chou model was used to analyze the influences of LaNi5 content, preparation method, temperature and initial hydrogen pressure on the hydriding kinetics of Mg-LaNi5 composites. Higher LaNi5 content could improve hydriding kinetics of Mg but not change hydrogen diffusion as the rate-controlling step, which was validated by characteristic reaction time tc. The rate-controlling step was hydrogen diffusion in the hydriding reaction of Mg-30 wt.% LaNi5 prepared by microwave sintering (MS) and hydriding combustion synthesis (HCS), and surface penetration was the rate-controlling step of sample prepared by mechanical milling (MM). Rising temperature and initial hydrogen pressure could accelerate the absorption rate. The rate-controlling step of Mg-30 wt.% LaNi5 remained hydrogen diffusion at temperatures ranging from 302 to 573 K, while that of Mg-50 wt.% LaNi5 changed from surface penetration to hydrogen diffusion with increasing initial hydrogen pressure ranging from 0.2 to 1.5 MPa. Apparent activation energies of absorption for Mg-30 wt.% LaNi5 prepared by MS and MM were respectively 25.2 and 28.0 kJ/mol H2 calculated by Chou model. Kinetic curves fitted and predicted by Chou model using temperature and hydrogen pressure were well exhibited.  相似文献   

3.
Mg (200 nm) and LaNi5 (25 nm) nanoparticles were produced by the hydrogen plasma-metal reaction (HPMR) method, respectively. Mg–5 wt.% LaNi5 nanocomposite was prepared by mixing these nanoparticles ultrasonically. During the hydrogenation/dehydrogenation cycle, Mg–LaNi5 transformed into Mg–Mg2Ni–LaH3 nanocomposite. Mg particles broke into smaller particles of about 80 nm due to the formation of Mg2Ni. The nanocomposite showed superior hydrogen sorption kinetics. It could absorb 3.5 wt.% H2 in less than 5 min at 473 K, and the storage capacity was as high as 6.7 wt.% at 673 K. The nanocomposite could release 5.8 wt.% H2 in less than 10 min at 623 K and 3.0 wt.% H2 in 16 min at 573 K. The apparent activation energy for hydrogenation was calculated to be 26.3 kJ mol−1. The high sorption kinetics was explained by the nanostructure, catalysis of Mg2Ni and LaH3 nanoparticles, and the size reduction effect of Mg2Ni formation.  相似文献   

4.
Hydrogenation properties of LaNi5  xInx alloys (x = 0.1, 0.2 and 0.5) were examined by their direct reaction with gaseous hydrogen and by cathodic charging in 6 M KOH solution. The gas phase measurements were carried out using Sievert's type apparatus in 300–400 K temperature range and at hydrogen pressures up to 40 bars. Indium substitution for Ni in LaNi5 significantly modifies the hydrogenation behavior, decreasing the equilibrium pressure of hydrogen and limiting the hydrogen capacity as compared to LaNi5. The LaNi4.9In0.1 revealed a distinct presence of two pressure plateaus on the high temperature isotherms. Apart from the α-phase (hydrogen solid solution) and β-phase (LaNi5H6 hydride), formation of a new σ*-hydride phase was postulated at the hydrogen content extended over the region of H/f.u. = 1.3–1.8. Thermodynamic functions: enthalpy and entropy of the hydrogen absorption process were calculated from the H2-pressure/composition (p–c) isotherms at several temperatures, applying the Van't Hoff's (lnp − 1/T) dependence. Electrochemical galvanostatic hydrogenation experiments at 185 mA/g charge/discharge rate revealed the greatest discharge current capacity of 319 mAh/g for LaNi4.9In0.1 alloy after 4–5 cycles. The hydrogen discharge capacities decrease with further increase of indium content in the alloy.  相似文献   

5.
A detailed thermodynamic analysis of galvanostatic −i/+i characteristics of epoxy resin bonded, LaNi5 powder based electrodes enables not only alloy hydrogenation ability but also oxidation susceptibility of their constituents to be determined. It is shown that electrode cycling is prone to oxidation of nickel during discharging process, however, the NiO/Ni equilibrium is reversible and nickel oxides undergo reduction during charging. Similar behavior exhibits bismuth as Ni partial substitute. The way of determining alloy constituent oxidation/reduction times as well their corrosion rate in 6 M KOH is presented. The effects of substitution of 20 at% of nickel by Bi or Zn on hydrogen capacity, corrosion behavior and surface development are discussed. It is shown that multiphase LaNi4Bi alloy possesses much worse whereas monophase LaNi4Zn alloy possesses clearly better hydrogen absorption properties as compared with LaNi5 reference. The plots of charge curves allow to distinguish processes of atomic hydrogen absorption and evolution of molecular H2 for the tested alloys.  相似文献   

6.
Hydrogen storage materials research is entered to a new and exciting period with the advance of the nanocrystalline alloys, which show substantially enhanced absorption/desorption kinetics, even at room temperatures. In this work, hydrogen storage capacities and the electrochemical discharge capacities of the Mg2(Ni, Cu)-, LaNi5-, ZrV2-type nanocrystalline alloys and Mg2Ni/LaNi5-, Mg2Ni/ZrV2-type nanocomposites have been measured. The electronic properties of the Mg2Ni1-xCux, LaNi5 and ZrV2 alloys were calculated. The nanocomposite structure reduced hydriding temperature and enhanced hydrogen storage capacity of Mg-based materials. The nanocomposites (Mg,Mn)2Ni (50 wt%)-La(Ni,Mn,Al,Co)5 (50 wt%) and (Mg,Mn)2Ni (75 wt%)-(Zr,Ti)(V,Cr,Ni)2.4 (25 wt%) materials releases 1.65 wt% and 1.38 wt% hydrogen at 25 °C, respectively. The strong modifications of the electronic structure of the nanocrystalline alloys could significantly influence hydrogenation properties of Mg-based nanocomposities.  相似文献   

7.
A new production system for rare-earth-based hydrogen storage alloys is proposed. We applied self-ignition combustion synthesis (SICS) utilizing hydrogenation heat of metallic calcium. The required primary energy and total exergy loss (EXL) for the production of 1 kg of LaNi5 alloy with the proposed and conventional systems were evaluated. The results revealed that the production of raw materials accounted for more than 90% of the total EXL in both systems. Specifically, the use of calcium had decisive effects on the total EXL of the system for producing LaNi5 alloy. The proposed system reduced the total EXL by 14.6 MJ/kg-LaNi5 as compared with the conventional system. The SICS was remarkably exergy-saving because the heating temperature was decreased by utilizing the hydrogenation heat of calcium and the product absorbed hydrogen without an activation treatment.  相似文献   

8.
Hydrogen generation by hydrolysis of hydrogenated Mg3LaNi0.1, and Mg3LaNi0.1Al0.1 in pure water at room temperature has been investigated and compared with that of Mg3La. It has been found that hydrolysis reaction rate of those hydrides, which are obtained by induction melting and then hydrogenated, is fast when they are immersed in pure water. The highest hydrogen yield is 1024 ml/g for hydrogenated Mg3LaNi0.1. The kinetics of hydrogen production reaction for hydrogenated Mg3LaNi0.1, and Mg3LaNi0.1Al0.1 hydrides at 298 K was also measured. The effect for addition of Ni and Al was also discussed in this paper.  相似文献   

9.
The study focuses on the reaction between hydrogen gas and LaNi5−xSnx alloys, where 0 ≤ x ≤ 0.5, in broad temperature and pressure ranges. It was performed by means of dynamic volumetric techniques using specific equipment developed at our laboratory. The substitution of Ni by Sn lowers the system equilibrium pressure and increases the hydrogen absorption reaction rate. Reaction pressures at room temperature range from 8 kPa (x = 0.5) to 250 kPa (x = 0). At 415 K the reaction pressure is within the range from 200 kPa to 4000 kPa for x = 0.5 and 0, respectively. The measured characteristic absorption time at 750 kPa for LaNi5 is around 1 min, while it remains below 2.5 s for LaNi4.5Sn0.5. The maximum H concentration goes from 1.3 wt.% for LaNi5 down to 0.95 wt.% for LaNi4.5Sn0.5. These results are useful to identify a metal system where the hydrogen interaction equilibrium properties can be tuned in a wide pressure range by choosing the chemical composition and the process temperature.  相似文献   

10.
LaNi5 alloy can be utilized to directly store and release hydrogen in mild condition, thus it is considered as a long-term safe and stable solid-state hydrogen storage material. In this work, LaNi5H5 was used as the solid-state hydrogen source in the CO2 methanation reaction. Impressively, the carbon dioxide conversion can be achieved to nearly 100% under 3 MPa mixed gas at 200 °C. The microstructure and composition analysis results reveal that the high catalytic activity may originate from the promoted elementary steps over in situ formed metallic Ni nanoparticles during the CO2 methanation process. More importantly, as the lowered reaction temperature prevented the agglomeration of Ni nanoparticles, this catalyst exhibited durable stability with 99% conversion rate of CO2 retained after 400 h cycling test.  相似文献   

11.
The Li–Mg–N–H system is a very promising hydrogen storage material due to its high capacity, reversibility and moderate operating conditions. In this work, the LiMgN/2LiH was directly synthesized by ball-milling the mixture of Li3N–MgH2 at 1:1 molar ratio by a reaction of Li3N + MgH2 → LiMgN + 2LiH. The hydrogenation/dehydrogenation properties of the as-prepared LiMgN/2LiH were investigated by a Sieverts'-type apparatus. The mixture of LiMgN/2LiH started to absorb hydrogen at 130 °C, and 2.2 wt%, 3.2 wt% hydrogen were absorbed under a pressure of 5 MPa and 10 MPa, respectively. Powder X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectrometer measurements were used to identify the phase characterizations of the products during the hydrogen absorption–desorption process. The reaction mechanism during the hydrogenation/dehydrogenation process for the Li3N–MgH2 system is discussed.  相似文献   

12.
A first investigation into the production of amorphous and nanostructured Ti-based alloys with nominal compositions Ti41.5Zr41.5Ni17, Ti61Zr22Ni17, Ti41.5V41.5Ni17 and Ti61V22Ni17 by mechanical alloying (MA) technique is presented. This technique was adopted to produce alloys' powders with high fresh surface area that were active for hydrogen storage. Hydrogen absorption characteristics and structure changes in the alloys after hydrogenation were investigated. Gas phase hydrogenation of the Ti–Zr–Ni alloys, at 573 K and an initial hydrogen pressure of 2 MPa, exhibited good hydriding properties and started at a maximal rate without induction period with a hydrogenation capacity up to 1.2 wt%. However, hydriding of Ti–V–Ni alloys at the same conditions exhibited slower rates. The Ti61V22Ni17 composition showed high hydrogen absorption capacity of 1.8 wt% and exceeded 4 wt% at 345 K. In addition, the Ti–V–Ni alloys showed structure stability after hydrogenation and retained the amorphous structure.  相似文献   

13.
Significant improvements in the hydrogen absorption/desorption properties of the 2LiNH2–1.1MgH2–0.1LiBH4 composite have been achieved by adding 3wt% ZrCo hydride. The composite can absorb 5.3wt% hydrogen under 7.0 MPa hydrogen pressure in 10 min and desorb 3.75wt% hydrogen under 0.1 MPa H2 pressure in 60 min at 150 °C, compared with 2.75wt% and 1.67wt% hydrogen under the same hydrogenation/dehydrogenation conditions without the ZrCo hydride addition, respectively. TPD measurements showed that the dehydrogenation temperature of the ZrCo hydride-doped sample was decreased about 10 °C compared to that of the pristine sample. It is concluded that both the homogeneous distribution of ZrCo particles in the matrix observed by SEM and EDS and the destabilized N–H bonds detected by IR spectrum are the main reasons for the improvement of H-cycling kinetics of the 2LiNH2–1.1MgH2–0.1LiBH4 system.  相似文献   

14.
In this work, in order to elucidate the effect of different alloying elements on the microstructure, activation and the de-/hydrogenation kinetics performance, the Mg–20La, Mg–20Ni and Mg–10Ni–10La (wt.%) alloys have been prepared by near equilibrium solidification combined with high-energy ball milling treatment to realize the internal optimization as well as particle refinement. The results show that the microstructures of the prepared alloys are significantly refined by forming different types and sizes of intermetallic compounds. Meanwhile, the effects of LaH3 and Mg2Ni within the activated samples on de-/hydrogenation kinetics are also discussed. It is observed that the alloy containing LaH3 preserves stable hydrogenation behavior between 573 and 623 K, while the hydrogenation properties of the alloy containing Mg2Ni is susceptible to temperature. A preferable hydrogenation performance is observed in Mg–10Ni–10La alloy, which can absorb as high as 5.86 wt% hydrogen within 15 min at 623 K and 3.0 MPa hydrogen pressure. Moreover, the desorption kinetics and the desorption activation energies are evaluated to illustrate the mechanism based on improved dehydrogenation performance. The addition of proper alloying elements Ni and La in combination with reasonable processing is an effective strategy to improve the de-/hydrogenation performance of Mg-based alloys.  相似文献   

15.
16.
The hydriding/dehydriding rates and the pressure–composition isotherms were measured for LaNi5, LaNi4.85Al0.15 and LaNi4.75Fe0.25 under quasi-isothermal and variable pressure conditions. Isothermal conditions were obtained by reducing the thermal time constant of the experimental device. Empirical rate equations to describe the sorption reaction kinetics were derived. These rates are expressed as a function of temporal composition, saturated composition, temperature, applied pressure and essentially the initial operating conditions which were not considered in most of all the previous studies related to the reaction kinetics of metal hydrides. Besides, the rate equations presented in this work can be integrated easily in the numerical models that predict dynamic flow and heat and mass transfer within realistic metal–hydrogen devices. This paper also discusses the effects of Fe and Al as substituents for Ni on P–C isotherms and reaction rates of LaNi5 alloy.  相似文献   

17.
In this work we study the effect of cycling in hydrogen with a purity grade 4.5 of six alloys belonging to the LaNi5−xSnx family for 0 ≤ x ≤ 0.5. Measurements consist in the alternate repetition of absorption reactions at a temperature of 316 K and an initial pressure of 800 kPa, each followed by a desorption reaction at the same temperature and a maximum backpressure of 2 kPa. All samples present good stability, preserving at least 98% of their initial capacity after 100 cycles. Samples with composition LaNi5 and LaNi4.55Sn0.45 were subjected to 1000 cycles, after which we observe a higher stability from the Sn-containing alloy (96% of the initial capacity preserved versus 92% for LaNi5). Absorption characteristic times do not suffer important changes in either case. Desorption is gradually retarded when Sn content is higher than 0.4 at.  相似文献   

18.
Mechanochemical CO2 methanation reactions using LaNi5 and LaNi4.6Al0.4 hydrogen storage alloy powders were investigated by the in-situ monitoring of the gas pressure change during ball-milling. Methane generation begins when the H2 partial pressure drops due to the H-uptake by the powder. Phase transition occurred in the sample after milling for 15 min and 224 min, with separate metallic Ni, La-oxide and La-hydroxide phases observed. Methane generation continued even after this phase separation. Our results imply that the formation of La-hydroxide at the surface and sub-surface contributed to methane generation during ball-milling. A comparison of LaNi5 and LaNi4.6Al0.4 suggests the amount of hydrogen stored in the hydrogen storage powder dominates the timing of the onset of the methane generation.  相似文献   

19.
The inexpensive fabrication technique of casting is applied to develop new Mg-Ni based hydrogen storage alloys with improved hydrogen sorption properties. A nanostructured eutectic Mg-Mg2Ni is formed upon solidification which introduces a large area of interfaces along which hydrogen diffusion can occur with high diffusivity. After a few cycles of hydrogenation and dehydrogenation, an ultrafine porous structure formed in the eutectic Mg-Mg2Ni and some cracks developed along the interface between the eutectic and the α-Mg matrix. This indicates that hydrogen atoms introduced into the alloys preferentially migrate along the interfaces in the nanostructured eutectic which enables effective short-range diffusion of hydrogen. Furthermore, transition metals (TMs) such as Nb, Ti and V in the range 240-560 ppm are added directly to molten Mg-10 wt% Ni alloys and are found to form intermetallic compounds with Ni during solidification. The alloys can store 5.6-6.3 wt% hydrogen at 350 °C and 2 MPa. TM-rich intermetallics distributed homogeneously in the cast alloys appear to play a key role in accelerating the nucleation of Mg from MgH2 upon dehydrogenation. This leads to a significant improvement in the hydrogen desorption kinetics.  相似文献   

20.
Structural, hydrogen storage, and electrochemical properties of LaMgNi4 alloy were investigated in this study to determine whether it can be used as an active material of the negative electrode in nickel–metal hydride (Ni/MH) batteries. X-ray diffraction study showed that amorphization occurs at the first dehydrogenation cycle and was recovered crystallization after 873 K annealing.Maximum hydrogen storage capacity reached 1.4 wt% in the first hydrogenation under 373 K. The reannealed alloy showed improved reversible hydrogen storage capacity at ~0.9 wt% due to more LaNi5 phase composition. Electrodes prepared from the investigated alloy showed maximum discharge capacities of ~340 mAh/g at 10 mA/g. The LaMgNi4 alloy electrode exhibited satisfactory cycling stability remaining 47% of its initial capacity after 250 cycles. The negative cohesive energy indicated the exothermic process and stable compound structures of the LaMgNi4 alloy and its hydrides via Density functional theory calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号