首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interfacial lithium-ion transfer at the LiMn2O4 thin film electrode/aqueous solution was investigated. The cyclic voltammograms of the film electrode conducted in the aqueous solution was similar to an adsorption-type voltammogram of reversible system, suggesting that fast charge transfer reaction proceed in the aqueous solution system. We found that the activation energy for this interfacial lithium-ion transfer reaction obtains 23–25 kJ mol−1, which is much smaller than that in the propylene carbonate solution (50 kJ mol−1). This small activation energy will be responsible for the fast interfacial lithium-ion transfer reaction in the aqueous solution. These results suggest that fast lithium insertion/extraction reaction can be realized by decreasing the activation energy for interfacial lithium-ion transfer reaction.  相似文献   

2.
Hydrogen gas (H2) is notified as a renewable energy carrier. It is wanted to discover a low-cost electrocatalyst for the hydrogen evolution reaction (HER) to substitute the high-cost Pt in electrolysis cell. Niobium electrocatalyst nominated to substitute noble materials for electrocatalytic H2 production and its electrochemical manner was estimated in H2SO4 acid of various concentrations utilizing a steady-state polarization and electrochemical impedance spectroscopy (EIS). The influences of acid concentration, cathodic potential and temperature on the H2 creation were examined. The outcomes display that HER on Nb electrode proceeds by the Volmer-Heyrovsky mechanism. EIS tests, under open circuit and under cathodic polarization, were performed and the fitting has been done utilizing a suggested model for the electrode/electrolyte interface. Apparent activation energies (Ea) were estimated to be ca. 10.5 kJ mol?1 for the HER on Nb. Thus, Nb is a good electrocatalyst for the cathodic H2 manufacturing.  相似文献   

3.
The kinetic characterization of hemicellulose hydrolysis of corn stover was investigated using a new reactor of dilute acid cycle spray flow-through (DCF) pretreatment. The primary purpose was to obtain kinetic data for hemicellulose hydrolysis with sulfuric acid concentrations (10-30 kg m−3) at relatively low temperatures (90-100 °C). A simplified kinetic model was used to describe its performance at moderate conditions. The results indicate that the rates of xylose formation and degradation are sensitive to flow rate, temperature and acid concentration. Moreover, the kinetic data of hemicellulose hydrolysis fit a first-order reaction model and the experimental data with actual acid concentration after accounting for the neutralization effect of the substrates at different temperatures. Over 90% of the xylose monomer yield and below 5.5% of degradation product (furfural) yield were observed in this reactor. Kinetic constants for hemicellulose hydrolysis models were analyzed by an Arrhenius-type equation, and the activation energy of xylose formation were 111.6 kJ mol−1, and 95.7 kJ mol−1 for xylose degradation, respectively.  相似文献   

4.
In situ Co, Cu and Ni nanoparticles were synthesized by chemical reduction of the absorbed Co (II), Cu (II) and Ni (II) ions inside hydrogel networks prepared from 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) and were used as a catalyst system in the generation of hydrogen in hydrolysis of ammonia borane (AB). Several parameters affecting the hydrolysis reaction such as the type of the metal, the amount of catalyst, the initial concentration of AB, and temperature, were investigated. The activation energy values in the hydrolysis reaction of AB solution in the presence p(AMPS)-Co, p(AMPS)-Cu and p(AMPS)-Ni catalyst systems were calculated as Ea = 47.7 kJ mol−1, 48.8 kJ mol−1 and 52.8 kJ mol−1, respectively. Thus, the catalytic activity of the metal nanoparticles prepared inside the same hydrogel matrix was found to be Ni < Cu < Co.  相似文献   

5.
The catalytic effect of aniline and benzylamine has been investigated for hydrogen evolution reaction on platinum electrode in sulfuric acid aqueous solution using voltammetric methods and electrochemical impedance spectroscopy. Kinetic parameters which characterize the hydrogen evolution reaction (cathodic transfer coefficient, exchange current density) have been determined using Tafel plots. It has been found that the addition of amines leads to an increase of the exchange current density, explained by an increased concentration of protons available at the interface. The catalytic effect of benzylamine and aniline is strongly correlated to their molecular parameters, such as dipole moment and molecular surface coverage. Also, apparent activation energies for hydrogen evolution reaction from solutions with and without addition of aromatic amines have been calculated. Electrochemical impedance spectroscopy results confirm an overall enhancement of hydrogen evolution in the presence of amines, as indicated by the lower values of charge transfer and adsorption resistances and by the decrease of characteristic time constants.  相似文献   

6.
The mechanism of the oxygen reduction reaction (ORR) on nanoparticulated Pt/C-Nafion electrodes prepared in one step has been studied to simulate the reaction in the cathode of a Polymer Electrolyte Fuel Cell (PEFC). The kinetic parameters have been obtained by hydrodynamic polarization in O2-saturated 0.01–1.00 M H2SO4 and temperatures in the range 25.0–50.0 °C. The ORR current density was maximum and practically independent of the ionomer fraction in the rage 10–55 wt% Nafion. The poorer proton conductivity for lower Nafion fractions and the formation of catalyst areas completely surrounded by Nafion together with adsorption of Pt sites by sulfonate groups for higher Nafion fractions, explain the minor ORR activity in these conditions. The ionomer influence on the O2 diffusion at high overpotentials for Pt/C-Nafion was negligible when the Nafion content was smaller than 20 wt%. The higher kinetic current density for Pt/C-Nafion (100 mA cm−2) with respect to smooth Pt-Nafion (40 mA cm−2), together with the smaller activation energy of the former (25 ± 4 kJ mol−1) with respect to the latter (42 ± 5 kJ mol−1) highlighted the better properties attained by the nanosize effect. A remarkable novel result is that the reaction order of H+ in HClO4 is close to unity, whereas in sulfuric acid it is significantly smaller and changes with potential, what has been related to the sulfate adsorption. The anomalous dependence of the charge transfer coefficient with temperature was then explained by the thermal change of the double layer structure and the variation of the coverage of adsorbed species on Pt. The more sensitive effect for Pt/C-Nafion than for smooth Pt-Nafion was ascribed to the stronger interaction between the components when the nanoparticles are involved.  相似文献   

7.
In this study, hydrogels were synthesized from 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) via a photo polymerization technique. Approximately 100 nm Ni metal nanoparticles were generated in situ inside these p(AMPS) hydrogel networks and used as a catalyst in hydrogen production by hydrolysis of sodium boron hydride in a basic medium. The effects of several parameters on the hydrolysis reaction such as the amount of catalyst, the initial concentration of NaBH4, and the temperature were investigated. The activation energy, activation enthalpy and activation of entropy for the reaction were calculated as 42.28 kJ mol−1, 39.59 kJ mol−1 and −171.67 J mol−1 K−1, respectively.  相似文献   

8.
Variable temperature IR spectroscopy (VTIR) was used to investigate the adsorption thermodynamics of carbon monoxide, dinitrogen and carbon dioxide on the protonic zeolite H-Beta. Interaction of the adsorbed gases with the zeolite Brønsted acid sites was found to involve an enthalpy change of −27, −19 and −33 kJ mol−1 for CO, N2 and CO2, respectively; the corresponding entropy change was −150, −140 and −146 J mol−1 K−1. The adsorbed gases showed also a weak interaction with silanols, which involves a ΔH0 value in the approximate range of −7 to −10 kJ mol−1. These results were discussed in the context of gas separation and carbon capture and sequestration (CCS) using zeolites.  相似文献   

9.
The NiCuZn ternary coating was electrochemically deposited on a copper electrode. Then, it was etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for use in the hydrogen evolution reaction (HER). The surface composition of coating before and after alkaline leaching was determined by energy dispersive X-ray (EDX) analysis. The surface morphologies were investigated by scanning electron microscopy (SEM). The long-term stability of electrode prepared for alkaline water electrolysis was investigated in 1 M KOH solution with the help of cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that, the NiCuZn coating has a compact and porous structure with good physical stability. Alkaline leaching process further improved the activity of NiCuZn coating in comparison with binary NiCu deposit for the HER. The long-term operation at −100 mA cm−2 showed good electrochemical stability over 120 h.  相似文献   

10.
Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF-Ag) as oxygen reduction electrodes for a protonic intermediate-temperature solid-oxide fuel cell (SOFC-H+) with BaZr0.1Ce0.8Y0.1O3 (BZCY) electrolyte was investigated. The BSCF-Ag electrodes were prepared by impregnating the porous BSCF electrode with AgNO3 solution followed by reducing with hydrazine and then firing at 850 °C for 1 h. The 3 wt.% silver-modified BSCF (BSCF-3Ag) electrode showed an area specific resistance of 0.25 Ω cm2 at 650 °C in dry air, compared to around 0.55 Ω cm2 for a pure BSCF electrode. The activation energy was also reduced from 119 kJ mol−1 for BSCF to only 84 kJ mol−1 for BSCF-3Ag. Anode-supported SOFC-H+ with a BZCY electrolyte and a BSCF-3Ag cathode was fabricated. Peak power density up to 595 mW cm−2 was achieved at 750 °C for a cell with 35 μm thick electrolyte operating on hydrogen fuel, higher than around 485 mW cm−2 for a similar cell with BSCF cathode. However, at reduced temperatures, water had a negative effect on the oxygen reduction over BSCF-Ag electrode, as a result, a worse cell performance was observed for the cell with BSCF-3Ag electrode than that with pure BSCF electrode at 600 °C.  相似文献   

11.
NaBH4 and KBH4 hydrolysis reactions (BH4 + 4H2O → B(OH)4 + 4H2), which can be utilized as a source of high purity hydrogen and be easily controlled catalytically, are exothermic processes. Precise determination of the evolved heat is of outmost importance for the design of the reactor for hydrogen generation. In this work we present an efficient calorimetric method for the direct measurement of the heats evolved during the catalyzed hydrolysis reaction. A modified Setaram Titrys microcalorimeter was used to determine the heat of hydrolysis in a system where water is added to pure solid NaBH4 or KBH4 as well as to solid NaBH4 or KBH4 mixed with a Co-based solid catalyst. The measured heats of NaBH4 hydrolysis reaction were: −236 kJ mol−1, −243 kJ mol−1, −235 kJ mol−1, and −236 kJ mol−1, without catalyst and in the presence of Co nanoparticles, CoO and Co3O4, respectively. In the case of the KBH4 hydrolysis reaction, the measured heats were: −220 kJ mol−1, −219 kJ mol−1, −230 kJ mol−1, and −228 kJ mol−1, without catalyst and with Co nanoparticles, CoO and Co3O4, respectively. Also, a comparison was made with an aqueous solution of CoCl2·6H2O used as catalyst in which case the measured heats were −222 kJ mol−1 and −196 kJ mol−1 for NaBH4 and KBH4 hydrolysis, respectively. The influence of solid NaOH or KOH additions on the heat of borohydride hydrolysis has been investigated as well.  相似文献   

12.
Hydrogen has concerned interest universally as an environmentally nontoxic and renewable fuel. Electrocatalytic hydrogen evolution reaction (HER) is one of the utmost favorable methods for hydrogen creation on a vast scale; however, the high cost of Pt-based supplies, which demonstrate the highest activity for HER, forced investigators to look for cheaper electro-catalysts. Tungsten has been considered as an effective, active and low cost electrocatalyst for the hydrogen evolution reaction, mostly in alkaline media, and we have investigated here its behavior in acid electrolytes. HER has been studied utilizing linear polarization technique and electrochemical impedance spectroscopy (EIS). It happens on W at rather low overpotential (−0.32 V vs. NHE at 10 mA cm−2, in 0.5 M H2SO4), yet more cathodic than the widely used Pt/C catalyst, but not so far from more sophisticated systems developed recently. The effect of acid concentration on the HER rate and the electrode stability was investigated. Cathodic transfer coefficient and exchange current density were calculated for the HER from Tafel curves obtained in H2SO4 solution at concentrations ranging from 0.1 to 3.0 M. EIS experiments were performed under both open circuit and/or cathodic polarization. It was found that the hydrogen evolution rate is relatively high under low overpotential, confirming that W is a possible applicant to substitute more expensive electrocatalysts usually used for the HER under acidic conditions. The process is economic and appropriate with no need for specific treatments, as supported by additional X-ray diffraction (XRD), Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization of the tungsten electrode surface.  相似文献   

13.
The catalytic effect of some aromatic amines towards hydrogen evolution reaction on copper in diluted sulfuric acid solution has been studied. Since amines facilitate the transport of protons from the solution bulk to the interface in the cathodic hydrogen evolution reaction, they are known as proton carriers. The catalytic effect of aniline, N-methylaniline, N-ethylaniline, N,N-dimethylaniline, N,N-diethylaniline, o-toluidine, m-toluidine and p-toluidine has been highlighted by linear sweep voltammetry. The kinetic parameters for the hydrogen evolution reaction (cathodic transfer coefficient 1-α and exchange current density io) in the presence of the studied aromatic amines were derived from the Tafel plots. It has been found that the catalytic effect of amines is active even at low concentration. Thus, in 0.5 mol L−1 H2SO4 solution the exchange current density increases by two orders of magnitude, from 2.01⋅10−5 A m−2 in the absence of aniline to 2.85⋅10−3 A m−2 in the presence of 10−4 mol L−1 aniline. The influence of amines concentration on the catalytic effect is described in detail for the case of m-toluidine. The results obtained by voltammetry have been compared with electrochemical impedance spectroscopy data. Furthermore, the kinetic parameters for the hydrogen evolution reaction have been determined as a function of temperature and amines concentration.  相似文献   

14.
Novel proton-conducting polymer electrolyte membranes have been prepared from bacterial cellulose by incorporation of phosphoric acid (H3PO4/BC) and phytic acid (PA/BC). H3PO4 and PA were doped by immersing the BC membranes directly in the aqueous solution of H3PO4 and PA, respectively. Characterizations by FTIR, TG, TS and AC conductivity measurements were carried out on the membrane electrolytes consisting of different H3PO4 or PA doping level. The ionic conductivity showed a sensitive variation with the concentration of the acid in the doping solution through the changes in the contents of acid and water in the membranes. Maximum conductivities up to 0.08 S cm−1 at 20 °C and 0.11 S cm−1 at 80 °C were obtained for BC membranes doped from H3PO4 concentration of 6.0 mol L−1 and, 0.05 S cm−1 at 20 °C and 0.09 S cm −1 at 60 °C were obtained for BC membranes doped from PA concentration of 1.6 mol L−1. These types of proton-conducting membranes share not only the good mechanical properties but also the thermal stability. The temperature dependences of the conductivity follows the Arrhenius relationship at a temperature range from 20 to 80 °C and, the apparent activation energies (Ea) for proton conduction were found to be 4.02 kJ mol−1 for H3PO4/BC membrane and 11.29 kJ mol−1 for PA/BC membrane, respectively. In particular, the membrane electrode assembly fabricated with H3PO4/BC and PA/BC membranes reached the initial power densities of 17.9 mW cm−2 and 23.0 mW cm−2, which are much higher than those reported in literature in a real H2/O2 fuel cell at 25 °C.  相似文献   

15.
Oxygen reduction reaction of (La,Sr)MnO3 (LSM) cathode on La9.5Si6O26.25 apatite (LSO) electrolyte is studied over the temperature range 750–900 °C and the oxygen partial pressure range 0.01–1 atm by electrochemical impedance spectroscopy. The impedance responses show two separable arcs and are analyzed in terms of two different equivalent circuits with comparable information on the electrode processes at high and low frequencies. The electrode process associated with the high frequency arc (σ1) is basically independent of oxygen partial pressure. The activation energy of σ1 is 188 ± 15 kJ mol−1 for the O2 reduction reaction on the LSM electrode sintered at 1150 °C, and decreases to 120 kJ mol−1 for the O2 reduction reaction on the LSM electrode sintered at 850 °C, which is close to 80–110 kJ mol−1 observed for the same electrode process at LSM/YSZ interface. The reaction order with respect to PO2PO2 and the activation energy of the electrode process associated with low frequency arc (σ2) are generally close to that of σ2 at the LSM/YSZ interface. The activation process of the cathodic polarization treatment is noticeably slower for the reaction at LSM/LSO interface as compared to that at LSM/YSZ interface. The impedance responses of O2 reduction reaction at the LSM/LSO interface are significantly higher than that at the LSM/YSZ interface due to the silicon spreading. The impedance responses decrease with the decrease of the sintering temperature of LSM electrode on LSO electrolyte. At the sintering temperature of 1000 °C, the impedance responses of O2 reduction reaction is 1.74 Ω cm2 at 900 °C, which is significantly smaller than that of LSM electrode sintered at 1150 °C.  相似文献   

16.
Catalyzed sodium borohydride hydrolysis is a highly valuable method to produce clean hydrogen energy for portable applications. This study provides a new and fast route to preparation of reusable hybrid materials composed of nickel-boron based nanoclusters dispersed in nanoporous poly(acrylamide) hydrogels for catalyzed hydrogen production. Palladium was added to the Ni–B catalysts during chemical reduction under the protection of poly(N-vinylpyrrolidone). The resulting nanoclusters immobilized in the hydrogels were essentially alloy particles with uni-modal size distributions and average diameters ranging from ca. 4–8 nm. Pd exerted significant promoting effects on the activities of the Ni–B catalysts. The highest activity was achieved for Pd–Ni–B nanoclusters with a charge ratio of Pd/Ni = 1/20 in moles, which exhibited activity nearly twice that of a Ni–B catalyst and good recyclability for consecutive uses. The hydrogen production rates also increased with the decreasing particle sizes. The activation energy, enthalpy and entropy for the reaction were determined to be 31.10 kJ mol−1, 28.39 kJ mol−1 and -45.22 J mol−1 K−1, respectively. The activation energy is lower than that of previously reported polymer-stabilized Co(0), Fe(0), or Ni(0) nanoparticle catalysts.  相似文献   

17.
Carbon aerogels (CAs) with oxygen-rich functional groups and high surface area are synthesized by hydrothermal treatment of glucose in the presence of boric acid, and are used as the support for loading cobalt catalysts (CAs/Co). Cobalt nanoparticles distribute uniformly on the surface of ACs, creating highly dispersed catalytic active sites for hydrolysis of alkaline sodium borohydride solution. A rapid hydrogen generation rate of 11.22 L min−1 g(cobalt)−1 is achieved at 25 °C by hydrolysis of 1 wt% NaBH4 solution containing 10 wt% NaOH and 20 mg the CAs/Co catalyst with a cobalt loading of 18.71 wt%. Furthermore, various influences are systematically investigated to reveal the hydrolysis kinetics characteristics. The activation energy is found to be 38.4 kJ mol−1. Furthermore, the CAs/Co catalyst can be reusable and its activity almost remains unchanged after recycling, indicating its promising applications in fuel cell.  相似文献   

18.
Co-based catalysts of the reaction by which hydrogen was obtained from NaBH4 solution were prepared by chemical reduction in a liquid phase. X-ray diffraction and scanning electron microscopy analyses showed that the as-prepared Fe@Co catalyst was ultrafine and amorphous. The calculated Arrhenius activation energy of the Fe@Co catalyst was 35.62(1) kJ mol−1 while that of the Co catalyst was 38.81(2) kJ mol−1, demonstrating that Fe@Co nanoparticles reduce the activation energy of the reaction more than does a Co nanocatalyst. X-ray absorption spectroscopy (XAS) clearly reveals the valences of Fe and Co. The Fe valence of Fe@Co is smallest among three catalysts because of the Co shell. The molar ration of Fe to Co is 1: 2 as determined by using XPS analysis, indicating that the novel catalyst reduces costs. The generation of hydrogen is schematically elucidated.  相似文献   

19.
In the new “Hydrogen Economy” concept, water electrolysis is considered one of the most promising technologies for hydrogen production. Novel electrocatalytic materials for the hydrogen electrode are being actively investigated to improve the energy efficiency of current electrolysers. Platinum (Pt) alloys are known to possess good catalytic activities towards the hydrogen evolution reaction (HER). However, virtually nothing is known about the effects of rare earth (RE) elements on the electrocatalytic behaviour of Pt towards the HER. In this study, the hydrogen discharge is evaluated in three different Pt–RE intermetallic alloy electrodes, namely Pt–Ce, Pt–Sm and Pt–Ho, all having equiatomic composition. The electrodes are tested in 8 M KOH aqueous electrolytes at temperatures ranging from 25 °C to 85 °C. Measurements of the HER by linear scan voltammetry allow the determination of several kinetic parameters, namely the Tafel coefficients, charge-transfer coefficients, and exchange current densities. Activation energies of 46, 59, 39, and 60 kJ mol−1 are calculated for Pt, Pt–Ce, Pt–Sm and Pt–Ho electrodes, respectively. Results show that the addition of REs improves the activity of the Pt electrocatalyst. Studies are in progress to correlate the microstructure of the studied alloys with their performance towards the HER.  相似文献   

20.
Nickel hydroxide electrodes with hollow spheres were fabricated using a PS (polystyrene) sphere template and electrochemical deposition. The nickel hydroxide grew perpendicular to the electrode substrate during anodic deposition and around the PS spheres during cathodic deposition. After the removal of the PS template, hollow spheres or open hollow spheres were formed via cathodic deposition. The nickel hydroxide electrode with hollow spheres and nanoflakes showed greatly enhanced electrochemical performance in alkaline solution compared with the bare nickel hydroxide electrode. The opening of the hollow spheres facilitated easy electrolyte transport to the reaction sites and led to a further increase in the specific capacitance of the nickel hydroxide electrode. The specific capacitance of the electrode with the open hollow spheres reached 800 F g−1, which was much higher than that of the bare electrode (224 F g−1) and the hollow-sphere electrode (342 F g−1) at a discharge current density of 10 A g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号