首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The water-gas shift (WGS) catalytic membrane reactor (CMR) incorporating a composite Pd-membrane and operating at elevated temperatures and pressures can greatly contribute to the efficiency enhancement of several methods of H2 production and green power generation. To this end, mixed gas permeation experiments and WGS CMR experiments have been conducted with a porous Inconel supported, electroless plated Pd-membrane to better understand the functioning and capabilities of those processes. Binary mixtures of H2/He, H2/CO2, and a ternary mixture of H2, CO2 and CO were separated by the composite membrane at 350, 400, and 450 °C, 14.4 bar (Ptube = 1 bar), and space velocities up to 45,000 h−1. H2 permeation inhibition caused by reversible surface binding was observed due to the presence of both CO and CO2 in the mixtures and membrane inhibition coefficients were estimated. Furthermore, WGS CMR experiments were conducted with a CO and steam feed at 14.4 bar (Ptube = 1 bar), H2O/CO ratios of 1.1-2.6, and GHSVs of up to 2900 h−1, considering the effect of the H2O/CO ratio as well as temperature on the reactor performance. Experiments were also conducted with a simulated syngas feed at 14.0 bar (Ptube  = 1 bar), and 400-450 °C, assessing the effect of the space velocity on the reactor performance. A maximum CO conversion of 98.2% was achieved with a H2 recovery of 81.2% at 450 °C. An optimal operating temperature for high CO conversion was identified at approximately 450 °C, and high CO conversion and H2 recovery were achieved at 450 °C with high throughput, made possible by the 14.4 bar reaction pressure.  相似文献   

2.
The investigation of thermally induced dehydrogenation of LiBH4 reveals that LiBH4 doped with the graphene catalysts shows superior dehydrogenation and rehydrogenation performance to that of Vulcan XC-72, carbon nanotube and BP2000 doped LiBH4. For doping with 20 wt.% graphene, thermal dehydrogenation of LiBH4 is found to start at ca. 230 °C and a total weight loss of 11.4 wt.% can be obtained below 700 °C. With increased loading of graphene within a LiBH4 sample, the onset dehydrogenation temperature and the two main desorption peaks from LiBH4 are found to decrease while the hydrogen release amount is found to increase. Moreover, variation of the equilibrium pressure obtained from isotherms measured at 350–450 °C indicate the dehydrogenation enthalpy is reduced from 74 kJ mol−1 H2 for pure LiBH4 to ca. 40 kJ mol−1 H2 for 20 wt.% graphene doped LiBH4. Importantly, the reversible dehydrogenation/rehydrogenation process was achieved under 3 MPa H2 at 400 °C for 10 h, with a capacity of ca. 4.0 wt.% in the tenth cycle. Especially, LiBH4 is reformed and new species, Li2B10H10, is detected after the rehydrogenation process.  相似文献   

3.
A 3NaBH4/YF3 hydrogen storage composite was prepared through ball milling and its hydrogen sorption properties were investigated. It is shown that NaBH4 does not react with YF3 during ball milling. The dehydrogenation of the composite starts at 423 °C, which is about 100 °C lower than the dehydrogenation temperature of pure NaBH4, with a mass loss of 4.12 wt%. Pressure–Composition–Temperature tests reveal that the composite has reversible hydrogen sorption performance in the temperature range from 350 °C to 413 °C and under quite low hydrogenation plateau pressures (<1 MPa). Its maximum hydrogen storage capacity can reach up to 3.52 wt%. The dehydrogenated composite can absorb 3.2 wt% of hydrogen within 5 min at 400 °C. Based on the Pressure–Composition–Temperature analyses, the hydrogenation enthalpy of the composite is determined to be −46.05 kJ/mol H2, while the dehydrogenation enthalpy is 176.76 kJ/mol H2. The mechanism of reversible hydrogen sorption in the composite involves the decomposition and regeneration of NaBH4 through the reaction with YF3. Therefore, the addition of the YF3 to NaBH4 as a reagent forms a reversible hydrogen storage composite.  相似文献   

4.
In this work we studied the adsorption of H2 at 77 K and 0.0–0.12 MPa onto carbon fibers activated with supercritical CO2 (ACFs) and with different burn-offs (10–53%). The highest amount of H2 stored was 2.45 wt% in an ACF with a burn-off of 51% at 0.12 MPa. The measured isotherms were analyzed using an equilibrium model derived by analogy with a multiple-site Langmuir-type adsorption model. The different equilibria correspond to adsorption in pores of different sizes. The experimental results fitted a model with two different adsorption sites satisfactorily, allowing such sites to be related to the microporous structure of the ACFs. Thus, a high-energy adsorbent–adsorbate interaction site, associated with very small micropores, accessible only to very small molecules such as H2, and another lower-energy site associated with larger pores can be proposed. The model also predicts the adsorption behavior under equilibrium conditions at higher pressures, allowing the maximum adsorption capacity of the ACFs to be determined. The results show that the ACFs adsorb most of the H2 molecules at low equilibrium pressures, and that they become almost saturated at pressures around 1.0 MPa. The maximum H2 storage capacity in these ACFs lies between 1.50 and 3.15 wt%.  相似文献   

5.
Mg-based materials are very promising candidates for hydrogen storage. In this paper, the graphene supported Ni was introduced to the Mg90Al10 system by hydrogenation synthesis (HS) and mechanical milling (MM). The 80 wt%Ni@Gn catalyst was synthesized by a facile chemical reduction method. The microstructures of the catalyst and composite show that Ni nanoparticles are well supported on the surface of graphene and they are dispersed uniformly on the surface of MgH2 particles. After heating to 450 °C and holding at 340 °C for 2 h subsequently under 2.0 MPa hydrogen pressure, all the samples are almost completely hydrogenated. According to the temperature programmed desorption test, the Mg90Al10-8(80 wt%Ni@Gn) composite could desorb 5.85 wt% H2 which comes up to 96% of the theoretical hydrogen storage capacity. Moreover, it shows the optimal hydriding/dehydriding performance, absorbing 5.11 wt% hydrogen within 400 s at 523 K, and desorbing 5.81 wt% hydrogen within 1800 s at 573 K.  相似文献   

6.
A novel nickel catalyst supported on Al2O3@ZrO2 core/shell nanocomposites was prepared by the impregnation method. The core/shell nanocomposites were synthesized by depositing zirconium species on boehmite nanofibres. This contribution aims to study the effects of the pore structure of supports and the zirconia dispersed on the surface of the alumina nanofibres on the CO methanation. The catalysts and supports were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). The catalytic performance of the catalysts for CO methanation was investigated at a temperature range from 300 °C to 500 °C. The results of the characterization indicate that the metastable tetragonal zirconia could be stably and evenly dispersed on the surface of alumina nanofibres. The interlaced nanorods of the Al2O3@ZrO2 core/shell nanocomposites resulted in a macropore structure and the spaces between the zirconia nanoparticles dispersed on the alumina nanofibres formed most of the mesopores. Zirconia on the surface of the support promoted the dispersion and influenced the reduction states of the nickel species on the support, so it prevented the nickel species from sintering as well as from forming a spinel phase with alumina at high temperatures, and thus reduced the carbon deposition during the reaction. With the increase of the zirconia content in the catalyst, the catalytic performance for the CO methanation was enhanced. The Ni/Al2O3@ZrO2-15 exhibited the highest CO conversion and methane selectivity at 400 °C, but they decreased dramatically above or below 400 °C due to the temperature sensitivity of the catalyst. Ni/Al2O3@ZrO2-30 exhibited a high and constant rate of methane formation between 350 °C and 450 °C. The excellent catalytic performance of this catalyst is attributed to its reasonable pore structure and good dispersion of zirconia on the support. This catalyst has great potential to be further studied for the future industrial use.  相似文献   

7.
Composite NaNH2-NaBH4 (molar ratio of 2/1) hydrogen storage materials are prepared by a ball milling method with various ball milling times. The compositions and hydrogen generation characteristics are investigated by means of X-ray diffraction (XRD) and thermo gravimetric-differential thermal analysis (TG-DTA). The structural characteristics imply that ball milling produces a new phase of Na3(NH2)2BH4, and mechanical energy accumulated in the ball milling process may be responsible for the phase change of Na3(NH2)2BH4. TG-DTA demonstrates that the phase change temperature of the composite NaNH2-NaBH4 (2/1) ball milled for 16 h is 141.8 °C, and the melting point is 197.3 °C; below 400 °C, composite hydrogen storage material is mainly decomposed to give hydrogen and Na3BN2; while above 400 °C, the previous by-product Na3BN2 continues to decompose so as to give metal Na gradually.  相似文献   

8.
Rehydrogenation behavior of 6LiBH4 + CaH2 composite with NbF5 has been studied between 350 and 500 °C after dehydrogenation at 450 °C. The composite exhibits the best rehydrogenation feature at 450 °C in terms of the overall rehydrogenation rate and the amount of absorbed hydrogen. It is found that about 9 wt% hydrogen is absorbed at 450 °C for 12 h. Up to 10 dehydrogenation–hydrogenation cycles have been carried out for the composite. It is demonstrated that 6LiBH4 + CaH2 with 15 wt% NbF5 maintains a reversible hydrogen storage capacity of about 6 wt% at 450 °C after a slight degradation between the 1st and 5th cycles. The addition of NbF5 seems to improve the cycle properties by retarding microstructural coarsening during cycles.  相似文献   

9.
This paper focuses on the yields of both main product NaBH4 and byproduct MgH2 of the thermochemical process. The influence of parameters such as i) the isothermal reaction temperature in the range 480 °C–660 °C, ii) the stoichiometric ratio of solid reactants NaBO2:Mg prepared from 1:2 to 1:8, iii) H2 pressure supplied from 2 to 31 bars and iv) the reaction time kept at isotherm from 0 to 16 h have been systematically investigated. The yields are estimated by in-situ and ex-situ evaluations. Two temperature regimes for MgH2 and NaBH4 formation are recognized from 370 °C to 450 °C and above 500 °C respectively. With regard to NaBH4 regeneration, temperature is the most important factor that positively accelerates the apparent reaction rate between 500 °C and 650 °C providing a sufficient H2 pressure. To efficiently obtain high NaBH4 yield mixtures with molar stoichiometric ratio between solid reactants not less than 1:4 is suggested. Experimental results also reveal that at 12 bars of H2 pressure high NaBH4 yield is obtained. Hence, more efficient way to improve mass transfer of solid reactants (e.g. advance reactor enhances mobility of reactants) rather than increasing H2 pressures is advised. Under optimized condition, 100% conversion of NaBO2 can be achieved within 1.5 h.  相似文献   

10.
Three activated carbons (ACs) having apparent surface areas ranging from 2450 to 3200 m2/g were doped with Pd nanoparticles at different levels within the range 1.3–10.0 wt.%. Excess hydrogen storage capacities were measured at 77 and 298 K at pressures up to 8 MPa. We show that hydrogen storage at 298 K depends on Pd content at pressures up to 2–3 MPa, below which the stored amount is low (<0.2 wt.%). At higher pressures, the micropore volume controls H2 storage capacity. At 77 K, Pd doping has a negative effect on hydrogen storage whatever the pressure considered. From N2 adsorption at 77 K, TPR, XRD, TEM, and H2 chemisorption studies, we concluded that: (i) Pd particles remained mainly decorating the outer surface of the ACs; (ii) increasing Pd content produced an increase of the metal particle size; (iii) ACs with higher surface area produced smaller metallic nanoparticles at a given Pd content.  相似文献   

11.
In this work, nitrogenation, ammonia generation, regeneration reactions of lithium-tin alloy is investigated as pseudo catalytic process of ammonia synthesis. Li17Sn4 synthesized by thermochemical method at 500 °C can react with 0.1 MPa of N2 below 400 °C. Nano or amorphous lithium nitride would be formed by the nitrogenation. By reaction of the nitrogenated samples and H2, ammonia is generated at 300 °C under 0.1 MPa. The initial alloy phase Li17Sn4 is regenerated below 350 °C from the products after the ammonia generation process. Based on the above three step process, ammonia can be pseudo-catalytically synthesized from N2 and H2 below 400 °C under ambient pressure. Furthermore, the reactivity for the ammonia synthesis using Li–Sn alloy is preserved during the NH3 synthesis cycles due to the characteristic reaction process based on the Li extraction and insertion.  相似文献   

12.
The surface adsorption effect of CO on the hydrogen permeability of a 12.5 micron-thick Pd77Ag23 membrane has been evaluated quantitatively under experimental conditions close to the operating conditions of the highly-efficient membrane reformer (MRF) system developed by Tokyo Gas. The permeability of the membrane was measured in the conditions of CO concentration between 1 and 5 vol.% at a temperature and pressure of up to 500 °C and 0.6 MPa, respectively. High feed flow rates and a microchannel module configuration were applied in the flux measurements to ensure that the results are obtained with limited influence of concentration polarization adjacent to the membrane surface and hydrogen depletion along the microchannel length. While the CO inhibition effect was close to negligible at 500 °C, it was significant at lower temperatures. At a feed pressure of 0.2 MPa, the CO inhibition effect was only 0.2% at a CO concentration of 1 vol.% and the effect was 3.6% at a CO concentration of 5 vol.% at 500 °C. The CO inhibition effect were 3.4% for 1 vol.% CO and 14.1% for 5 vol.% CO at 400 °C. Measurements were also carried out at a high feed pressure of 0.6 MPa to evaluate the pressure dependence of the CO inhibition effect. The CO inhibition effect decreased to 0.7% at a CO feed concentration of 5 vol.% at 500 °C. Lower CO inhibition effect were also observed at 450 and 400 °C compared to the data obtained with the feed pressure of 0.2 MPa, while the inhibition levels were almost the same at 350 °C. Though the CO inhibition effect is larger at a lower feed pressure of 0.2 MPa, the effect was only 0.2% at 1 vol.% CO at 500 °C, which is close to the operating conditions of the MRF system. This study quantitatively revealed that the CO inhibition effect on hydrogen flux is extremely small when the membrane is operated at temperatures equal to or higher than 500 °C, even for state-of-the-art thin membranes. The performance of the Tokyo Gas MRF seems thus mainly limited by concentration polarization effects.  相似文献   

13.
The energy-storage capacity of reduced graphene oxide (rGO) is investigated in this study. The rGO used here was prepared by thermal annealing under a nitrogen atmosphere at various temperatures (300, 400, 500 and 600 °C). We measured high-pressure H2 isotherms at 77 K and the electrochemical performance of four rGO samples as anode materials in Li-ion batteries (LIBs). A maximum H2 storage capacity of ∼5.0 wt% and a reversible charge/discharge capacity of 1220 mAh/g at a current density of 30 mA/g were achieved with rGO annealed at 400 °C with a pore size of approximately 6.7 Å. Thus, an optimal pore size exists for hydrogen and lithium storage, which is similar to the optimum interlayer distance (6.5 Å) of graphene oxide for hydrogen storage applications.  相似文献   

14.
Electrospinning produces sub-micron sized continuous fibers from polymer solutions or melt by electric force. Due to its versatility and cost-effectiveness, this method has been recently adopted for the fabrication of one-dimensional materials. Here, we fabricated polyacrylonitrile (PAN) polymer fibers from which uniform nanoporous carbon fibers with diameters of 100-200 nm were obtained after carbonization at 800 °C in Ar + H2O. Water vapor was injected during carbonization to be utilized as a nanoscale pore former. Additionally, a direct coating method using palladium nanoparticles on the carbon fibers was developed. Palladium salt solution was electrosprayed during the electrospinning of the polymer fibers. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to confirm surface chemical composition and degree of carbonization. The specific surface area of the palladium coated carbon fibers was 815.6 m2/g. Reversible hydrogen adsorption capacity was determined to be 0.35 wt% at 298 K, 0.1 MPa.  相似文献   

15.
This paper presents an experimental investigation for an improved process of sorption-enhanced steam reforming of methane in an admixture fixed bed reactor. A highly active Rh/CeαZr1−αO2 catalyst and K2CO3-promoted hydrotalcite are utilized as novel catalyst/sorbent materials for an efficient H2 production with in situ CO2 capture at low temperature (450–500 °C). The process performance is demonstrated in response to temperature (400–500 °C), pressure (1.5–6.0 bar), and steam/carbon ratio (3–6). Thus, direct production of high H2 purity and fuel conversion >99% is achieved with low level of carbon oxides impurities (<100 ppm). A maximum enhancement of 162% in CH4 conversion is obtained at a temperature of 450 °C and a pressure of 6 bar using a steam/carbon molar ratio of 4. The high catalyst activity of Rh yields an enhanced CH4 conversion using much lower catalyst/sorbent bed composition and much smaller reactor size than Ni-based sorption enhanced processes at low temperature. The cyclic stability of the process is demonstrated over a series of 30 sorption/desorption cycles. The sorbent exhibited a stable performance in terms of the CO2 working sorption capacity and the corresponding CH4 conversion obtained in the sorption enhanced process. The process showed a good thermal stability in the temperature range of 400–500 °C. The effects of the sorbent regeneration time and the purge stream humidity on the achieved CH4 conversion are also studied. Using steam purge is beneficial for high degree of CO2 recovery from the sorbent.  相似文献   

16.
The effect of CO and CO2 on the performance and stability of Pd–Ag thin film membranes prepared by electroless plating deposition (EPD) was investigated, observing the presence of dissociation to carbon and oxygen which slowly diffuse in the membrane influencing also H2 permeability. The effect of the two carbon oxides was investigated both separately and combined in the 400–450 °C temperature range over long-term cumulative experiments (up to over 350 h) on a membrane that already worked for over 350 h in H2 or H2–N2 mixtures. An increase of the H2 permeation flux was observed feeding only CO2 in the range 10–20%. This effect was interpreted as deriving from the facilitated H2 flux caused from oxygen diffusion (deriving from CO2 dissociation) in the membrane. CO induces instead a partial inhibition on the H2 flux deriving from the negative effect of CO competitive chemisorption as well as C diffusion in the membrane, which overcome the positive effect associated to oxygen diffusion in the membrane. Carbon and oxygen diffuse through the membrane with a rate two order of magnitude lower than hydrogen, and recombinate at the permeate side forming CO, CO2 and CH4 which amount increases with time-on-stream. The effect is reversible and not associated with the creation of cracks or defects in the membrane, as supported by leak tests.  相似文献   

17.
The storage of large quantities of hydrogen at ambient temperature is a key factor in establishing a hydrogen-based economy. One strategy for hydrogen storage is to exploit the interaction between H2 and a solid material by physisorption of hydrogen on porous materials. However, physisorption materials containing MOF, porous carbons, zeolites, clathrates, and synthesized organic polymers physisorb only about 1 wt% of H2 at ambient temperature. One approach to solving this problem is to prepare new classes of physisorption materials which exhibits a mechanism different from the reported materials in hydrogen storage. Here we report the synthesis of apo cross-linked ferritin supramolecules by disulfide bonds, and their holo form. Unlike non-protein adsorbents, the hydrogen storage capacity of these protein materials increases as a function of temperature over the range of 20–40 °C. The holo supramolecules enable the adsorption of hydrogen up to 3.51 wt% at 40 °C and 40 bar H2. In contrast, non-protein physisorption materials such as activated carbon and nano Fe2O3 marginally adsorb hydrogen, and, as reported, their ability to adsorb hydrogen decreases with increasing temperature under the same experimental condition. These results demonstrate that protein materials have a unique hydrogen storage mechanism which offers new opportunities in exploration of physisorption materials at ambient temperature.  相似文献   

18.
In this article, we have explored the hydrogen (H2) storage capacity of the Li doped B clusters LinB14(n = 1–5) using density functional theory (DFT). The geometrical and Bader's topological parameters indicate that the clusters adsorb H2 in the molecular form. The Li atom polarises the H2 molecules for their effective adsorption on the clusters. The LinB14 (n = 1–5) clusters are found to be stable even after H2 adsorption at room temperature. The average adsorption energy is found to be in the range of 0.12–0.14 eV/H2. Among the various clusters, the Li5B14 shows maximum H2 storage capacity (13.89 wt%) at room temperature. The ADMP simulation reveals that within few femtoseconds (fs), the H2 molecules begin to move away from the clusters and within 400 fs most of the H2 molecules moved away from the clusters.  相似文献   

19.
This paper presents an experimental study for a newly modified K2CO3-promoted hydrotalcite material as a novel high capacity sorbent for in-situ CO2 capture. The sorbent is employed in the sorption enhanced steam reforming process for an efficient H2 production at low temperature (400–500 °C). A new set of adsorption data is reported for CO2 adsorption over K-hydrotalcite at 400 °C. The equilibrium sorption data obtained from a column apparatus can be adequately described by a Freundlich isotherm. The sorbent shows fast adsorption rates and attains a relatively high sorption capacity of 0.95 mol/kg on the fresh sorbent. CO2 desorption experiments are conducted to examine the effect of humidity content in the gas purge and the regeneration time on CO2 desorption rates. A large portion of CO2 is easily recovered in the first few minutes of a desorption cycle due to a fast desorption step, which is associated with a physi/chemisorption step on the monolayer surface of the fresh sorbent. The complete recovery of CO2 was then achieved in a slower desorption step associated with a reversible chemisorption in a multi-layer surface of the sorbent. The sorbent shows a loss of 8% of its fresh capacity due to an irreversible chemisorption, however, it preserves a stable working capacity of about 0.89 mol/kg, suggesting a reversible chemisorption process. The sorbent also presents a good cyclic thermal stability in the temperature range of 400–500 °C.  相似文献   

20.
Nanostructured MgH2/0.1TiH2 composite was synthesized directly from Mg and Ti metal by ball milling under an initial hydrogen pressure of 30 MPa. The synthesized composite shows interesting hydrogen storage properties. The desorption temperature is more than 100 °C lower compared to commercial MgH2 from TG-DSC measurements. After desorption, the composite sample absorbs hydrogen at 100 °C to a capacity of 4 mass% in 4 h and may even absorb hydrogen at 40 °C. The improved properties are due to the catalyst and nanostructure introduced during high pressure ball milling. From the PCI results at 269, 280, 289 and 301 °C, the enthalpy change and entropy change during the desorption can be determined according to the van’t Hoff equation. The values for the MgH2/0.1TiH2 nano-composite system are 77.4 kJ mol−1 H2 and 137.5 J K−1 mol−1 H2, respectively. These values are in agreement with those obtained for a commercial MgH2 system measured under the same conditions. Nanostructure and catalyst may greatly improve the kinetics, but do not change the thermodynamics of the materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号