首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Rumen microbial fuel cells (RMFCs) are a promising technology for sustainable production of alternative energy and fiber waste treatment. However, the influence of catholytes with different oxidizing powers on anode metabolites and electrical properties of straw-fed MFCs will be mainly evaluated in this study. Furthermore, the exploration of nonlinear features in RMFCs would be another subject of debate. Results show that voltage generation correlates positively to anode total volatile fatty acids, acetic acid, and butyric acid concentrations, along with the ratio of acetic acid to propionic acid, which would favor the production of reducing equivalents. In addition, the finding of an attractor indicates that RMFCs possessing a chaotic characteristic is a nonlinear system and could be used to strengthen the metabolism of microorganisms. These observations will provide information for improvement in RMFC fed native plant fiber substrate.  相似文献   

2.
This study focused on methanol degradation in single chamber microbial fuel cells (SCMFCs). The batch-mode SCMFCs tests over 900 h showed that methanol was able to be partly converted into electricity, and power generation was not affected by methanol concentrations. Methanol degradation efficiencies were 100% at all methanol concentrations tested (0.005–0.04 M), and the effluent chemical oxygen demand (COD) was 82–118 mg/L. The increasing in methanol concentration led to lower pH inside SCMFCs and lower coulombic efficiencies (CE), which might indicate the swift from electrogenic reactions to anaerobic fermentation. The cathodic open circuit potential (OCP) started to decrease when the methanol concentration was higher than of 0.02 M, indicating the possible cathode poisoning by methanol, while the linear sweep voltammetry (LSV) results showed the cathode poisoning was not substantial.  相似文献   

3.
Two flow patterns (plug flow (PF) and complete mixing (CM)) of microbial fuel cells (MFCs) with multiple anodes–cathodes were compared in continuous flow mode for wastewater treatment and power generation. The results indicated that PF-MFCs had higher power generation and columbic efficiency (CE) than CM-MFCs, and the power generation varied along with the flow pathway in the PF-MFCs. The gradient of substrate concentrations along the PF-MFCs was the driving force for the power generation. In contrast, the CM-MFCs had higher wastewater removal efficiency than PF-MFCs, but had lower power conversion efficiency and power generation. This work demonstrated that MFC configuration is a key factor for enhancing power generation and wastewater treatment.  相似文献   

4.
The potential of single chamber microbial fuel cells (SCMFC) to treat raw, fresh human urine was investigated. The power generation (55 μW) of the SCMFCs with platinum (Pt)-based cathode was higher than those with Pt-free cathodes (23 μW) at the beginning of the tests, but this difference decreased over time. Up to 75% of the chemical oxygen demand (COD) in urine was reduced after a 4-day treatment. During this time, the ammonium concentration increased significantly to 5 gNH4+-N/L in SCMFCs due to urea hydrolysis, while sulfate concentration decreased and transformed into H2S due to sulfate reduction reactions. Calcium and magnesium concentrations dropped due to precipitation at high pH, and phosphorous decreased 20–50% due to the formation of struvite that was found on the cathode surface and on the bottom of the anodic chamber. The advantages of power generation, COD removal, and nutrient recovery make SCMFCs treating human urine a cost-effective biotechnology.  相似文献   

5.
Microbial fuel cells (MFCs) are bioelectrochemical transducers that can be used to produce electrical power under the activity of microbes during the wastewater treatment processes. In the present study, the electrode spacing was considered as a parameter to investigate the influence on the performance of MFCs. The electrode spacing was defined as the distance of the anode electrode plate to the polymer exchange membrane in the MFCs. Three values were set at 0.0, 3.0, and 6.0 cm, respectively. In addition, a flow device, like a honeycomb type flow straightener, was introduced and implemented in the anode chamber for creating a uniform flow. The inner diameter of the honeycomb was 0.7 cm. Results showed that a higher limiting current density with 4108.7 mA/m2 and a lower resistance with 2.51 Ω can be found in the case of the 0.0 cm electrode spacing. These results also indicated that the shorter electrode spacing with flow straightener devices would improve the performance of MFCs, leading to lower internal resistance and higher power density. In addition, the scanning electron microscopy was employed to analyze the biofilm thickness for MFCs with different electrode spacing. It was also found that the biofilm thickness with 0 cm electrode spacing was larger than the other two cases, leading to a lower internal resistance in the MFCs.  相似文献   

6.
Microbial fuel cells (MFCs) use microorganisms to convert organic matter into electricity. In order to enhance the mass transfer of MFCs, four types of simplified flow channels, without flow obstacles (square, circular, divergent and convergent), were designed and applied to the anode/cathode channels of MFCs. The simulation analysis showed that the four types of simplified flow channels without flow obstacles obtained a better flow mixing efficiency with an Aspect Ratio (AR) of 1 at a Reynolds number (Re) of 60. A maximum power density of 617.8 mW/m2 and a COD (chemical oxygen demand) degradation ratio = 9.9% were obtained by the MFCs with the convergent types of flow channels without flow obstacles. This is because the flow mechanism (convection and vortex flow) generated by convergent types of flow channels decrease the mass transfer and ohmic losses. Therefore, this concept of the simplified flow channel without flow obstacles will be useful to the application of MFCs in the future.  相似文献   

7.
In the current study, a modified single chambered multi-electrode microbial fuel cell was constructed using carbon electrodes, which produced a maximum power density of 25 mW/m2. Four electrochemically active bacteria were obtained from the biofilm of the single chambered microbial fuel cell operated with Capra hircus rumen fluid collected from a slaughter house. These bacteria were characterized using 16S rRNA analysis and have been identified as Cloacibacterium normanense strain RA1, Micrococcus luteus strain RA2, Diaphorobacter oryzae strain RA3, and Pseudomonas aeruginosa strain RA5. Cloacibacterium normanense strain RA1 showed a steady increase in power density till the 6th day and reached a maximum of 51 mW/m2 on the same day. The electron transferability of anodic biofilm was studied using cyclic voltammetry. It was found that C. normanense strain RA1, D. oryzae strain RA3, and P. aeruginosa strain RA5 showed oxidation and reduction potential while M. luteus strain RA2 showed only reduction potential.  相似文献   

8.
An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m−2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m−2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m−2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth.  相似文献   

9.
Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell.  相似文献   

10.
In proton exchange membrane fuel cells, baffled flow channels can enhance the reactant transfer and improve the cell performance. Many different baffled flow channels have been numerically studied in previous published papers. However, what kind of baffled flow channels can improve the cell performance most is still unknown. In this simulation work, a two‐dimensional, two‐phase, nonisothermal, and steady‐state model of proton exchange membrane fuel cells is developed. The mass transfer and cell performance of PEMFCs with different baffled flow channels have been numerically compared. Simulation results show that the rectangular baffle can enhance the reactant transfer most and improve the cell performance most; however, the power loss in rectangular baffled flow channel is also the highest. To inherit the advantages and overcome the shortages of the rectangular baffled flow channel, an optimized baffled flow channel is developed. In this newly developed baffled flow channel, the windward side is designed as the streamline shape and the leeward side is designed as the sloped shape. Results of the simulation also show that the optimized baffled flow channel can reduce the power loss accounted by the pumping power in reactant delivering process and the cell performance can be further improved.  相似文献   

11.
Proton exchange membrane (PEM) fuel cell performance is directly related to the flow channel design on bipolar plates. Power gains can be found by varying the type, size, or arrangement of channels. The objective of this paper is to present two new flow channel patterns: a leaf design and a lung design. These bio-inspired designs combine the advantages of the existing serpentine and interdigitated patterns with inspiration from patterns found in nature. Both numerical simulation and experimental testing have been conducted to investigate the effects of two new flow channel patterns on fuel cell performance. From the numerical simulation, it was found that there is a lower pressure drop from the inlet to outlet in the leaf or lung design than the existing serpentine or interdigitated flow patterns. The flow diffusion to the gas diffusion layer was found be to more uniform for the new flow channel patterns. A 25 cm2 fuel cell was assembled and tested for four different flow channels: leaf, lung, serpentine and interdigitated. The polarization curve has been obtained under different operating conditions. It was found that the fuel cell with either leaf or lung design performs better than the convectional flow channel design under the same operating conditions. Both the leaf and lung design show improvements over previous designs by up to 30% in peak power density.  相似文献   

12.
Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m−2, which is 34% larger than the untreated control (CF-C, 1020 mW m−2). This power density is 25% higher than using only acid treatment (1100 mW m−2) and 7% higher than that using only heat treatment (1280 mW m−2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C-O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications.  相似文献   

13.
A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L−1 glucose (19 W m−3) by 495% for 50 mg L−1 ceftriaxone sodium + 1000 mg L−1 glucose (113 W m−3), while the maximum power density is 11 W m−3 using 50 mg L−1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.  相似文献   

14.
The characteristics of electricity generation and COD removal of dual-chamber microbial fuel cells (MFCs) operated with alkaline substrates were studied. Substrates with constant pH of either 7 or 9 as well as varying pH in a cycle of 7-8-9-8-7 were used. MFCs operated with these substrates were denoted as MFC-pH7, MFC-pH9 and MFC-pHV, respectively. The experimental results indicate that the MFC-pHV can generate the highest performance of 2554 ± 159 mW/m2. Cyclic voltammetry (CV), active biomass and electrochemical impedance spectroscopy (EIS) measurements were conducted and these results suggested that the MFC-pHV had the highest electrochemical activity per unit biomass and the lowest internal resistance, which together contributed to the improved power output of the MFC-pHV. In addition, compared with the other two MFCs operated at fixed pH values, the COD removal efficiency of the MFC-pHV was improved due to the stronger adaptation to the varying pH-environment.  相似文献   

15.
In this study, we investigate the air-water two-phase flow in a single flow channel of polymer electrolyte membrane (PEM) fuel cells. In the ex situ study, both straight and serpentine channels with various gas diffusion layer (GDL) surfaces are studied. Focus is placed on the two-phase flow patterns, which are optically characterized using a microscope with a high-resolution camera, and the two-phase pressure amplifiers. We find that the GDL surface properties slightly affect the flow pattern and two-phase pressure amplifier in the flow field configuration. Flow pattern transition occurs at the superficial gas velocity of around 1 m s−1, and the pressure amplifier can reach as high as 10. A two-fluid model is also presented together with one dimensional (1-D) analytical solution, and acceptable agreement is achieved between the model prediction and experimental data at high gas flow rates.  相似文献   

16.
A serpentine flow channel can be considered as neighboring channels connected in series, and is one of the most common and practical channel layouts for polymer electrolyte membrane (PEM) fuel cells, as it ensures the removal of liquid water produced in a cell with good performance and acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross directly to the neighboring channel via the porous gas diffusion layer (GDL) due to the high‐pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area resulting in a substantially lower amount of pressure drop in an actual PEM fuel cell compared with the case without cross flow. In this study, an analytical solution is obtained for the cross flow in a PEM fuel cell with a serpentine flow channel based on the assumption that the velocity of cross flow is linearly distributed in the GDL between two successive U‐turns. The analytical solution predicts the amount of pressure drop and the average volume flow rate in the flow channel and the GDL. The solution is validated over a wide range of the thickness and permeability of the GDL by comparing the results with experimental measurements and 3‐D numerical simulations in literature. Excellent agreement is obtained for the permeability less than 10?9 m2, which covers the typical permeability values of the GDLs in actual PEM fuel cells. The solution presents an accurate and efficient estimation for cross flow providing a useful tool for the design and optimization of PEM fuel cells with serpentine flow channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
阴极电子受体对微生物燃料电池性能的影响   总被引:1,自引:0,他引:1  
以双室型微生物燃料电池为试验装置,比较铁氰化钾、重铬酸钾、高锰酸钾作为阴极电子受体时微生物燃料电池的电压和功率输出。结果表明,高锰酸钾与重铬酸钾混合电子受体对微生物燃料电池性能的提高没有显著效果,不如两者的单独表现;高锰酸钾对应的最高输出电压可达1 160 mV,但很不稳定,会很快下降到600 mV左右,在实际应用中有一定障碍;在酸性条件(pH=3.0)下,重铬酸钾的开路电压为1 081.2 mV,最大输出功率密度为35.1 W/m3,电池内阻为170.27Ω,而且表现稳定,是理想的阴极电子受体。  相似文献   

18.
In this study the air–water two-phase flow in a tapered channel of a PEMFC was numerically simulated using the volume of fluid (VOF) method. In particular, a 3D mathematical model of the fuel cell flow channel was used to obtain a reliable evaluation of the fuel cell performance for different taper angles and different temperatures and to calculate the total amount of water produced. This information was then used as boundary conditions to simulate the two-phase flow in the cell channel through a 2D VOF model. Typical operating conditions were assigned and the numerical mesh was constructed to represent the real fuel cell configuration. The results show that tapering the channel downstream enhances the water removal due to increased airflow velocity. In the rectangular channel no film formation is noted with a marked predominance of slug flow. In contrast, as the taper angle is increased the predominant two-phase flow pattern is film flow. Finally many contact angles have been used to simulate the effect of the hydrophobicity of a GDL surface on the motion of the water. As the hydrophobicity of a GDL surface is decreased the presence of film is more evident even for less tapered channels.  相似文献   

19.
To obtain additional hydrogen recovery from the downstream photosynthetic biohydrogen reactor (PBR), a system (PBR1–MFCs–PBR2) that combined PBRs with three single chamber microbial fuel cells (MFCs) was proposed in this study. The results revealed that the PBR2 in PBR1–MFCs–PBR2 showed a hydrogen production rate of 0.44 ± 0.22 mmol L h−1, which was 15 and 4 times higher than those obtained by direct connecting the two PBRs (PBR1–PBR2) and pH regulated system (PBR1–pH regulation–PBR2), respectively. In addition, the PBR1–MFCs–PBR2 exhibited the highest glucose utilization (ηg) of 97.6 ± 2.1 %, while lower ηg values of 75.6 ± 2.2% and 70.1 ± 1.2% was obtained for PBR1–PBR2 and PBR1–pH regulation–PBR2, respectively. These improvements were due to the removal of inhibitory byproduct and H+ from the PBR1 effluent by the MFCs.  相似文献   

20.
A relationship between a flooding and a cell voltage drop for polymer electrolyte fuel cell was investigated experimentally and numerically. A visualization cell, which has single straight gas flow channel (GFC) and observation window, was fabricated to visualize the flooding in GFC. We ran the cell with changing operation condition, and measured the time evolution of cell voltage and took the images of cathode GFC. Considering the operation condition, we executed a developed numerical simulation, which is based on multiphase mixture model with a formulation on water transport through the surface of polymer electrolyte membrane and the interface of gas diffusion layer/GFC. As a result in experiment, we found that the cell voltage decreased with time and this decrease was accelerated by larger current and smaller air flow rate. Our simulation succeeded to demonstrate this trend of cell voltage. In experiment, we also found that the water flushing in GFC caused an immediate voltage change, resulting in voltage recovery or electricity generation stop. Although our simulation could not replicate this immediate voltage change, the supersaturated area obtained by our simulation well corresponded to fogging area appeared on the window surface in the GFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号