首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present two sequences of ensembles of nonsystematic irregular repeat-accumulate (IRA) codes which asymptotically (as their block length tends to infinity) achieve capacity on the binary erasure channel (BEC) with bounded complexity per information bit. This is in contrast to all previous constructions of capacity-achieving sequences of ensembles whose complexity grows at least like the log of the inverse of the gap (in rate) to capacity. The new bounded complexity result is achieved by puncturing bits, and allowing in this way a sufficient number of state nodes in the Tanner graph representing the codes. We derive an information-theoretic lower bound on the decoding complexity of randomly punctured codes on graphs. The bound holds for every memoryless binary-input output-symmetric (MBIOS) channel and is refined for the binary erasure channel.  相似文献   

2.
We prove that for any given R between 0 and 1 the best threshold value for a regular LDPC code of rate R with common variable degree v and common check degree c occurs when v is at least 3 and is minimal subject to the condition R=1-v/c.  相似文献   

3.
In this work, we give good concatenated code ensembles for the binary erasure channel (BEC). In particular, we consider repeat multiple-accumulate (RMA) code ensembles formed by the serial concatenation of a repetition code with multiple accumulators, and the hybrid concatenated code (HCC) ensembles recently introduced by Koller et al. (5th Int. Symp. on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting of an outer multiple parallel concatenated code serially concatenated with an inner accumulator. We introduce stopping sets for iterative constituent code oriented decoding using maximum a posteriori erasure correction in the constituent codes. We then analyze the asymptotic stopping set distribution for RMA and HCC ensembles and show that their stopping distance hmin, defined as the size of the smallest nonempty stopping set, asymptotically grows linearly with the block length. Thus, these code ensembles are good for the BEC. It is shown that for RMA code ensembles, contrary to the asymptotic minimum distance dmin, whose growth rate coefficient increases with the number of accumulate codes, the hmin growth rate coefficient diminishes with the number of accumulators. We also consider random puncturing of RMA code ensembles and show that for sufficiently high code rates, the asymptotic hmin does not grow linearly with the block length, contrary to the asymptotic dmin, whose growth rate coefficient approaches the Gilbert-Varshamov bound as the rate increases. Finally, we give iterative decoding thresholds for the different code ensembles to compare the convergence properties.  相似文献   

4.
5.
One hybrid ARQ for broadcasting or multicasting in wireless erasure channel   总被引:1,自引:0,他引:1  
In this paper, we introduce a new hybrid ARQ technique for broadcasting or multicasting in erasure channel. The system is tested according to the objective criteria—quantity of information sent by the source, loses, and number of negative acknowledgments (NACKs) sent by the receiver nodes (end nodes). We compare our proposed method with automatic repeat request (ARQ), hybrid ARQ II (HARQ II), and also with a forward error correction (FEC) transmission technique based on Reed Solomon code (RS). The main focus of the presented HARQ is to reduce the quantity of redundant information sent by the source as well as the number of NACKs sent by the receivers, maintaining the condition that all the information is being recovered successfully by the receivers.  相似文献   

6.
7.
We characterize the capacity-achieving input covariance for multi-antenna channels known instantaneously at the receiver and in distribution at the transmitter. Our characterization, valid for arbitrary numbers of antennas, encompasses both the eigenvectors and the eigenvalues. The eigenvectors are found for zero-mean channels with arbitrary fading profiles and a wide range of correlation and keyhole structures. For the eigenvalues, in turn, we present necessary and sufficient conditions as well as an iterative algorithm that exhibits remarkable properties: universal applicability, robustness and rapid convergence. In addition, we identify channel structures for which an isotropic input achieves capacity.  相似文献   

8.
This paper investigates decoding of low-density parity-check (LDPC) codes over the binary erasure channel (BEC). We study the iterative and maximum-likelihood (ML) decoding of LDPC codes on this channel. We derive bounds on the ML decoding of LDPC codes on the BEC. We then present an improved decoding algorithm. The proposed algorithm has almost the same complexity as the standard iterative decoding. However, it has better performance. Simulations show that we can decrease the error rate by several orders of magnitude using the proposed algorithm. We also provide some graph-theoretic properties of different decoding algorithms of LDPC codes over the BEC which we think are useful to better understand the LDPC decoding methods, in particular, for finite-length codes.  相似文献   

9.
A possibility of estimating the finite-length performance of sparse-graph code ensembles gives two opportunities: to compare different codes of the same length in a context very close to real, practical applications and to perform the parameter optimization for a given code length [2]. We need a finite-length approximation that is valid for any code ensemble. The scaling approach seems to be a tool, general enough to provide such an approximation. However, the analytical derivation of parameters of the scaling approximation has been successful only for LDPC codes [1]; despite several attempts [25], [20], no such result was proposed for other code ensembles. In this paper, we focus on the finite-length performance of turbo-like codes, by applying the scaling approach to this case. In particular, by assuming the transmission over the binary erasure channel, we conjecture the scaling law and derive its scaling parameter. As examples, we present the performance estimation for Repeat-Accumulate codes [11], parallel turbo codes [8] and TLDPC codes [5], in all cases matching well the numerical results.  相似文献   

10.
11.
We propose an efficient maximum-likelihood (ML) decoding algorithm for decoding low-density parity-check (LDPC) codes over the binary-erasure channel (BEC). We also analyze the computational complexity of the proposed algorithm.  相似文献   

12.
In this paper, we are concerned with the finite-length analysis of low-density parity-check (LDPC) codes when used over the binary erasure channel (BEC). The main result is an expression for the exact average bit and block erasure probability for a given regular ensemble of LDPC codes when decoded iteratively. We also give expressions for upper bounds on the average bit and block erasure probability for regular LDPC ensembles and the standard random ensemble under maximum-likelihood (ML) decoding. Finally, we present what we consider to be the most important open problems in this area  相似文献   

13.
Extrinsic information transfer functions: model and erasure channel properties   总被引:10,自引:0,他引:10  
Extrinsic information transfer (EXIT) charts are a tool for predicting the convergence behavior of iterative processors for a variety of communication problems. A model is introduced that applies to decoding problems, including the iterative decoding of parallel concatenated (turbo) codes, serially concatenated codes, low-density parity-check (LDPC) codes, and repeat-accumulate (RA) codes. EXIT functions are defined using the model, and several properties of such functions are proved for erasure channels. One property expresses the area under an EXIT function in terms of a conditional entropy. A useful consequence of this result is that the design of capacity-approaching codes reduces to a curve-fitting problem for all the aforementioned codes. A second property relates the EXIT function of a code to its Helleseth-Klove-Levenshtein information functions, and thereby to the support weights of its subcodes. The relation is via a refinement of information functions called split information functions, and via a refinement of support weights called split support weights. Split information functions are used to prove a third property that relates the EXIT function of a linear code to the EXIT function of its dual.  相似文献   

14.
A merit factor based on the sequence autocorrelation function, whose minimization leads to the reduction in the Cramer-Rao lower bound (CRLB) for the variance of “two-sided” intersymbol interference (ISI) channel estimation is introduced. Pairs of binary pilot symbol sequences (a preamble and a postamble) for channel estimation are jointly designed to minimize this merit factor. Given that the number of channel taps is L and the length of a pilot symbol sequence is (N+L-1), where N⩾L, we distinguish between the case when N is even and the case when it is odd. For even N, we show that complementary sequences not only minimize the merit factor, but also the CRLB. For a subset of odd N we construct almost-complementary periodic sequence pairs that minimize the merit factor. The optimal pilot symbol block signaling requires alternating between two (in most cases) different binary sequences that form the merit-minimizing pair  相似文献   

15.
16.
A method for determining an upper bound for the size of a code for a two-access binary erasure channel is presented. For uniquely decodable codes, this bound gives a combinatorial proof of a result by Liao. Examples of the bound are given for codes with minimum distance 4.  相似文献   

17.
We derive upper bounds on the maximum achievable rate of low-density parity-check (LDPC) codes used over the binary erasure channel (BEC) under Gallager's decoding algorithm, given their right-degree distribution. We demonstrate the bounds on the ensemble of right-regular LDPC codes and compare them with an explicit left-degree distribution constructed from the given right degree.  相似文献   

18.
19.
We derive upper and lower bounds on the encoding and decoding complexity of two capacity-achieving ensembles of irregular repeat-accumulate (IRA1 and IRA2) codes on the binary erasure channel (BEC). These bounds are expressed in terms of the gap between the channel capacity and the rate of a typical code from this ensemble for which reliable communications is achievable under message-passing iterative (MPI) decoding. The complexity of the ensemble of IRA1 codes grows like the negative logarithm of the gap to capacity. On the other hand, the complexity of the ensemble of IRA2 codes with any choice of the degree distribution grows at least like the inverse square root of the gap to capacity, and at most like the inverse of the gap to capacity.  相似文献   

20.
Codes on sparse graphs have been shown to achieve remarkable performance in point-to-point channels with low decoding complexity. Most of the results in this area are based on experimental evidence and/or approximate analysis. The question of whether codes on sparse graphs can achieve the capacity of noisy channels with iterative decoding is still open, and has only been conclusively and positively answered for the binary erasure channel. On the other hand, codes on sparse graphs have been proven to achieve the capacity of memoryless, binary-input, output-symmetric channels with finite graphical complexity per information bit when maximum likelihood (ML) decoding is performed. In this paper, we consider transmission over finite-state channels (FSCs). We derive upper bounds on the average error probability of code ensembles with ML decoding. Based on these bounds we show that codes on sparse graphs can achieve the symmetric information rate (SIR) of FSCs, which is the maximum achievable rate with independently and uniformly distributed input sequences. In order to achieve rates beyond the SIR, we consider a simple quantization scheme that when applied to ensembles of codes on sparse graphs induces a Markov distribution on the transmitted sequence. By deriving average error probability bounds for these quantized code ensembles, we prove that they can achieve the information rates corresponding to the induced Markov distribution, and thus approach the FSC capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号