首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
激光对空中目标测距的大气修正研究   总被引:5,自引:0,他引:5  
钟声远 《激光与红外》2000,30(4):203-207
根据大气结构特性提出了一个只需测量站大气参数的激光大气距离修正公式 ,它对大气层内、外目标具有普遍的适应性 ,而且能适应于低仰角目标的修正 ,其距离修正计算误差 ,在仰角大于 5°时 ,优于 2 .5cm。  相似文献   

2.
卫星目标光学测量大气折射修正   总被引:1,自引:0,他引:1  
本文从实测的大气参数廓线出发,讨论了对卫星目标进行光学定位测量时,进行大气折射误差修正时的几个问题,如大气色散、大气湍流和大气水平不均匀性等对折射修正的影响。首先计算了不同仰角下卫星目标光学测量的大气折射修正量的大小,讨论了用不同波长测量时大气色散所造成的修正量的偏差。同时还讨论了大气湍流、大气水平不均匀以及大气条件及昼夜变化等气象因素所引起的折射修正误差。  相似文献   

3.
大气折射对雷达低仰角跟踪误差的影响分析   总被引:3,自引:0,他引:3  
该文基于雷达测角原理和确定性电波传播模型,采用等效地球半径法考虑大气折射效应,建立仰角误差预测方法;计算不同大气折射环境下的仰角误差。研究结果证明:大气折射与多路径的综合效应中,折射环境的变化会对仰角误差造成很大影响,表明大气折射是低仰角跟踪时需要考虑的重要因素。  相似文献   

4.
针对光学测量中大气折射对测角误差影响较大的问题,建立了大气折射率与测角误差之间的数学模型,提出了2种修正大气折射误差的有效方法,并通过实测数据对2种方法进行比较分析,证明在低仰角(<5°)时用新方法修正后的俯仰角更接近真值,并且计算量小,精度高.  相似文献   

5.
传统电波折射修正算法普遍采用大气球面分层假设,这类算法在修正高仰角测量目标时具有较好的修正精度,然而对于低仰角、远距离目标,修正精度还不高。该文提出一种折射修正算法,采用更精确的椭球面分层模型描述大气分布,利用迭代递推的方法计算修正后的目标位置,相比传统折射修正算法,计算量有所增加,但是提高了低仰角、远距离目标测量数据折射修正精度,可用于事后数据处理。  相似文献   

6.
"五九”型探空仪对折射修正精度的限制   总被引:8,自引:1,他引:7  
要对空中目标进行精确测速定位,必须进行电波折射误差修正.基于常用" 五九”型探空仪的精度,分析了用该仪器测量大气结构的测量误差,以及它对电波折射修正精度的限制.结果表明,用"五九”型探空仪测量大气结构时,大气测量误差随海拔高度的增高而降低;电波折射修正精度随仰角的增加而增高,在1°以上仰角,引起电波折射修正的残差小于修正量的1.1%.  相似文献   

7.
为了利用雷达对低空和超低空飞行器进行精确探测,必须对影响雷达测量精度的大气折射误差进行实时修正。针对目前大气折射误差计算存在处理时间较长、不能满足实时性要求的现状,提出了一种利用虚高进行折射误差修正的快速算法。根据等效地球半径中电波射线为直线的情形推出计算接近目标真实高度的虚高方法,利用虚高将折射误差公式中的积分项分为两部分,最影响折射误差修正处理时间的部分采用一次积分完成,另一小部分利用变步长的迭代方法完成。仿真实验表明,在保证与目前公认高精度的射线描迹法相同的精度条件下,利用虚高进行大气折射误差修正可实现快速计算,计算速度至少提高一倍,且计算速度随雷达仰角的增大而增快。  相似文献   

8.
大气折射和色散对激光传输的影响   总被引:7,自引:0,他引:7  
由于大气折射和色散效应,当用可见光或红外线瞄准目标而用另一波长的激光对目标进行探测或打击时,瞄准路径和激光传输路径是不一样的,瞄准点和激光束之间存在误差。本文建立了大气层折射模型,并给出了在不同仰角时,用可见光(0.55μm)和红外线(4μm)进行瞄准、用CO2激光器对10km远的目标进行探测或打击,瞄准点和CO2激光束之间的距离大小。  相似文献   

9.
对流层电波折射误差修正经验模型研究   总被引:3,自引:0,他引:3  
大气的折射效应引起电波传播延迟和路径弯曲.目前常见的电波折射经验模型只考虑了时延误差,而对于低仰角(5°以下)目标,弯曲误差的影响是不能忽略的,为进一步提高对目标的定位精度,以某沿海地区为例,利用1986~1995年的历史气象探空数据建立了适合不同仰角的电波折射修正经验模型,并拟合得到了模型中的参数.统计分析表明,经验模型与射线描迹法计算的折射误差具有很好的一致性.  相似文献   

10.
低仰角对流层折射修正快速算法   总被引:2,自引:0,他引:2  
大气的折射效应引起电波传播延迟和路径弯曲,测量数据对流层修正的精度直接影响到飞行目标轨(弹)道确定的精度。考虑到对流层折射修正的精度和效率以及5°以下低仰角数据传统修正方法具有较大的误差,通常不对测量数据进行实时对流层折射修正,这使得实时定位的精度受到较大影响。研究设计了一种能够应用于实时数据处理快速有效的对流层折射修正迭代算法。经大量外场实测数据验证,该算法能够有效地消除低仰角对流层折射偏差,对高仰角测量数据的对流层折射修正亦具有较高的精度。  相似文献   

11.
一种低仰角对流层折射修正的新方法   总被引:1,自引:0,他引:1       下载免费PDF全文
大气折射效应引起电波传播延迟和路径弯曲,测量数据对流层折射修正的精度直接影响到飞行目标轨(弹)道确定的精度。考虑到对流层折射修正的精度和效率以及5°以下低仰角数据传统修正方法具有较大的误差,通常不对测量数据进行实时对流层折射修正,这使得实时定位的精度受到较大影响。文中提出了一种基于光电传播几何路径迭代的对流层折射修正新方法,解决了修正精度和实时性不能兼顾的问题。经大量无人机校飞和载人航天工程外场实测数据验证,该算法能够实时有效地消除低仰角对流层折射偏差,对高仰角测量数据的对流层折射修正亦具有较高的精度。  相似文献   

12.
张瑜  马耀庭 《电光与控制》2007,14(4):74-76,101
要利用空中飞行器上武器来攻击地面目标,首先必须对地面目标进行精确定位,然后才能实施精确打击.大气介质的不均匀性使得雷达测量定位产生折射误差,从而影响雷达的定位精度.因此对高精度的雷达系统,必须进行电波折射误差修正.这里采用空中雷达处的大气折射率来预测空中雷达电波传播的大气剖面,再经过电波射线描迹方法推出了一种实用于空中雷达对地面目标精确定位的电波折射误差修正方法.仿真计算表明:俯视雷达与同一传播路径上地基雷达的计算结果很吻合.随着俯视角度的增大,电波折射引起的误差逐渐减小,反之,俯视角度愈小,电波折射误差愈大.当雷达在10 km高度时,5°以下俯角的电波折射误差达10 m以上.  相似文献   

13.
本文研究了电波大气折射理论,分析了传播误差因素,阐述了区域导航信号的传播路径与 GNSS 卫星导航的不同,论述了对流层延迟对区域导航信号测量精度的影响,设计了满足区域导航系统应用需求的对流层延迟误差修正模型,并通过仿真研究,验证了所设计区域导航对流层延迟误差修正模型的可行性,并给出了该模型在远距离低仰角和近距离高仰角下的误差修正能力。  相似文献   

14.
张银  王强  喻波  袁永亭 《电讯技术》2022,62(2):213-217
大气折射误差是二次雷达测距误差中最主要的因素之一.针对目前还没有二次雷达在大气中的折射距离误差修正模型,根据工程中的检飞数据,提出了一种二次雷达大气折射距离误差修正方法.该方法根据二次雷达获得的C模式气压高度实时计算折射率,得到修正的雷达波速度,减小了大气折射误差,进一步减小了距离测量的误差,从而提高了测距精度.  相似文献   

15.
为满足测量船高精度测控模式下对电波折射修正精度的需求,针对测量船采用的高斯分层积分法具有较高精度、但存在计算复杂且不具有实时性的缺陷,提出了一种电波折射误差修正的新方法,将距离折射表示成天顶距离误差和仰角因子的函数关系,解决了测量船实时电波折射误差修正精度差的问题,满足了测量船数据处理的精度需求。  相似文献   

16.
雷达方位角折射误差修正方法研究   总被引:1,自引:1,他引:0  
要进一步提高雷达系统的测量定位精度,除了尽力提高硬件精度和优化数据处理方法外,大气环境对雷达测量精度的影响必须考虑。目前进行的雷达电波折射误差修正,几乎都是建立在假设大气在水平方向均匀的条件下,认为雷达测量的方位角无折射误差,其对于下垫面均匀的平坦地区是可行的,但下垫面复杂地区方位角的折射误差必须修正。文中通过利用差分方法求解任意大气层中的射线方程,得到了实用的单脉冲雷达方位角的折射误差修正方法。  相似文献   

17.
针对光学测量系统测量得到的空中目标俯仰角数据,包含了大气折射带来的误差问题,建立了俯仰角修正误差模型,并详细介绍了修正模型具体计算实施过程,提出了采用三弯矩方程计算任意高度大气折射系数和高斯积分计算俯仰角折射修正值.经俯仰角折射效果分析和实践证明该方法精确、有效,满足高精度数据处理的要求.  相似文献   

18.
大气参数满足一定条件(修正折射率梯度小于0)时会形成大气波导,利用大气波导可实现雷达的超视距探测。由于近海面易形成蒸发波导,利用蒸发波导实现雷达的超视距探测已成为目前舰船雷达最实用的方法之一。雷达电波射线在不均匀大气中传播时会产生折射误差,为提高舰船雷达的定位精度,必须研究雷达在蒸发波导中超视距探测时的大气折射误差。根据电波传播理论,利用电波射线描迹技术,建立了舰船雷达在蒸发波导中实现超视距探测时的大气折射误差模型。仿真实验表明,蒸发波导条件下雷达超视距探测目标时的大气折射误差较大,且计算时不能采用常规的折射误差计算方法。  相似文献   

19.
为了满足高轨道目标高精度测控的需要,提出了基于双频GNSS的空间投影法和自适应网格法两种电离层距离折射误差修正方法,并对比分析了两种方法在不同仰角、角径时电离层距离折射误差修正精度. 分析结果显示:对于2.0 GHz电波信号而言,在较高仰角(仰角>45°)处,空间投影法和自适应网格法修正精度较高,均优于0.2 m;在低仰角和大角径时,空间投影法修正剩余快速增大,修正精度快速降低恶化,达到米量级,而自适应网格法修正精度则不受仰角和角径的影响. 这表明:自适应网格法电离层距离修正精度高,适用性强,且便于工程应用,可为提高高轨道目标的测控精度提供有力支撑.  相似文献   

20.
星载激光测高仪大气干项延迟校正   总被引:1,自引:0,他引:1       下载免费PDF全文
星载激光测高仪发射的激光脉冲在通过地球大气层时发生折射,导致激光路径的延长,为了获得高精度的测距结果,必须对大气延迟进行修正;而大气干项延迟在大气延迟中占主导作用,仅由测量位置的地表大气压力决定。通过推导静态大气在非理想气体条件下的流体静力学方程,得出地表气压与位势高度有关的大气压力模型,结合NCEP基于标准大气压层的气象数据和GLAS测量的时间经纬度和高程数据,对位势高度使用4阶Runge-Kutta算法进行数值积分得出地表气压,进而计算大气干项延迟。通过该方法和NCEP地表气压估计得出的干项延迟分别与GLAS官方公布的干项延迟对比,该方法计算结果的趋势与准确程度均占优,且最大干项延迟误差小于2 cm。证明通过流体静力学方程数值积分计算地表气压的方法能够得出对星载激光测高仪较为准确的大气干项延迟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号