首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 61 毫秒
1.
贝叶斯网络在高炉铁水硅含量预测中的应用   总被引:9,自引:1,他引:9  
刘学艺  刘祥官  王文慧 《钢铁》2005,40(3):17-20
应用贝叶斯网络对高炉铁水硅含量进行预测。首先阐述了贝叶斯网络的数学描述,在此基础上给出贝叶斯网络预测公式的一种简化形式。然后建立高炉铁水硅含量的贝叶斯网络预测模型,对山东莱钢1 号高炉在线采集的2 000炉数据进行网络学习,离线预测取得了较好的效果。与神经网络等其他方法相比,它更适合解析高炉过程,而且透明的推理过程对高炉工长判断炉温变化趋势具有指导意义。  相似文献   

2.
黄献春  张志远 《炼铁》1989,8(1):58-59
近年来,为了适应钢材高级化的要求,开发了以炉外脱磷为中心的新的炼钢方法,并对其关键之一的高炉炉前铁水脱硅处理予以了注意。在炉前脱硅过程中,为了使下步工序脱磷处理能够顺利进行,要求把脱硅后的铁水含硅量控制在容许范围内,最近为了使脱磷费用最佳化,脱磷前铁水的含硅量正在接近适当范围。为了使脱硅处理后硅含量达到适当数值,有必要测定铁水含硅量,并控制脱硅剂的投入量。可是,采用以往的发光分析法,从取样到判明要耽搁30~40min 左右,不能适用于控制。其次,饮水含硅量是高炉炉况的重要指标之一,从硅成分的控制和炉况管理两方面考虑,都希望能实现铁水含硅量迅速测定。日本钢管公司福山钢铁厂根据千叶工业大学雀部实教授的方案,与大阪氧气工业公司共同开发了应用氧传感器双层电解质型的铁水含硅量传感器,并在该厂2号高炉顺利使用。  相似文献   

3.
高炉铁水含硅量预报自适应数学模型的研制与试验   总被引:3,自引:0,他引:3  
孙克勤 《钢铁》1989,24(6):4-8
本文介绍了应用自适应原理跟踪高炉炉温变化的铁水含硅量预报自适应数学模型。模型由两部分组成,自适应主模型和专家系统子模型。应用该模型的铁水含硅量实时预报计算机系统已在鞍钢9号高炉试运行,效果良好,连续764炉的统计表明,预报命中率达82.3%。  相似文献   

4.
为了更好地描述高炉生产,鞍钢炼铁厂与北京清华大学合作开发了“铁水含硅量预报自适应数学模型”,试图用自适应原理来跟踪高炉炉温的变化.在9号高炉连续运行后,获得了较高的硅预报命中率.该系统具有操作方便、维护简单等特点,给高炉生产带来降焦、增产、提高质量等好处,如果再增设防尘设备,系统将会更加完善.  相似文献   

5.
高炉铁水含硅量和含硫量动力学预报研究   总被引:1,自引:0,他引:1  
高小强  郑忠 《钢铁》1995,30(4):10-13
把平行工序调整为顺序工序是网络计划图优化调整的中心问题之一。根据网络的特点,本文引入了准值与最小值的概念,彻底解决了从四个平行工序中选择三个工序组成最佳顺序链的优化方法。  相似文献   

6.
石钢高炉铁水含硅量神经网络预报模型   总被引:1,自引:0,他引:1  
本文按照现代控制理论,把高炉视为多输入——单输出系统,利用人工神经网络方法,结合高炉生产实际建立了石钢高炉铁水含硅量BP神经网络模型。通过引入动态步长和“惯性项系数”提高了网络收敛速度。采用“修正式”预报模式提高了铁水含硅量预报的命中率。结果表明:在允许误差为0.1%时,命中率达到了86.67%,可以为高炉操作提供指导。  相似文献   

7.
按照现代控制理论,利用人工神经网络方法,把高炉视为多输入—单输出系统,结合高炉生产实际建立了石钢高炉铁水含硅量神经网络预报模型。通过引入动态步长和惯性项系数提高了网络收敛速度。采用不断更新学习样本集的方法提高了铁水含硅量预报的命中率。结果表明:在允许误差为0.1%时,命中率达到了86.67%,可以为高炉操作提供指导。  相似文献   

8.
在既定冶炼条件下,依据炉内反应平衡学原理,导出了炉温定量推算式及铁水[Si]量推算式,其推算结果与实际数据具有良好对应关系,可用于现场操作推算与调控参考。  相似文献   

9.
基于WA SVM模型的高炉铁水含硅量预测   总被引:1,自引:0,他引:1  
基于小波在处理非线性、非平稳随机信号和支持向量机在解决非线性、高维数、小样本等问题的优点,提出了一种二者组合的预测模型。先用小波变换将铁水含硅量的时间序列分解成不同的高频和低频层次,对不同层次构建支持向量机模型进行预测,然后通过序列重构得到原始时间序列的预测结果。利用山东莱钢1号高炉在线采集的数据作为应用案例,WA SVM组合模型与工程常用的AR模型和单一的最小二乘支持向量机模型的预测结果比较,预测精度有明显提高。  相似文献   

10.
叙述了高炉内硅还原机理和降硅途径。1号高炉在降低铁水含硅量方面采取的措施有低焦比操作,大风量和富氧操作,高碱度操作等。还提出了1号高炉今后降低铁水含硅量的设想。  相似文献   

11.
支持向量机在铁水硅含量预报中的应用   总被引:3,自引:1,他引:3  
支持向量机是基于统计学习理论发展而来的一种机器学习算法,它能较好地解决非线性、高维数、小样本、局部极小点等实际问题。本文提出了使用最小二乘支持向量机模型预测高炉铁水硅含量的方法,以山东莱钢1号高炉在线采集数据作为应用案例。结果表明最小二乘支持向量机模型预测高炉铁水硅含量命中率可达到85%以上。  相似文献   

12.
为了准确预测高炉炼铁过程的硅含量,分析了高炉工艺参数对高炉铁水硅含量的时序性影响,以支持向量机理论为基础构建了2类铁水硅含量预测模型,即硅含量模型和硅变化量模型。利用首钢迁钢3号高炉铁水硅含量数据进行模型测试,测试结果表明2类模型预测命中率均可达到80%。  相似文献   

13.
The high and fluctuation property of ??Si?? content in hot metal (HM) is always a problem in COREX process. The precise prediction of ??Si?? content in HM from COREX process can provide a theoretical basis and technical reference for stabilizing and reducing the ??Si?? content in HM. A back propagation (BP) neural network was established to predict the ??Si?? content in HM from COREX process. The input parameters of the model were determined by correlation analysis, and the hysteretic heats corresponding to each parameter were determined by calculating the Deng??s relevancy. The results show that when the prediction error is ??0. 1%, the hit rate is 80%. The method of continuous updating the training samples was used to improve the prediction accuracy of the model. The prediction results show that the hit rate is 90% in absolute error range of ??0. 1%, and the prediction accuracy has been greatly improved compared with previous model. The improved model can provide a theoretical basis for judging the change of ??Si?? content in HM and subsequent operations.  相似文献   

14.
高炉铁水中的硫含量是描述铁水质量的一个重要指标.为了在出铁之前了解铁水中硫含量的高低,建立预测模型是必要的.本文利用遗传算法(GA)和BP神经网络构造了高炉铁水硫含量的预测分析模型,从某高炉选取117组数据进行学习和预测.运行结果表明,模型预测精度较高,当要求绝对误差为±3×10-6时,命中率可达61.54%;绝对误差为±4×10-6时,命中率可达84.69%.在此基础上,应用该模型回归分析了高炉风量、热风压力、富氧量、铁间料批数与铁水硫含量之间的相关关系,结果与高炉冶炼理论基本吻合,可为高炉生产提供一定的指导.  相似文献   

15.
高炉炼铁排放CO2是钢铁行业温室气体排放的主要来源,CO2的产生与高炉内众多条件相关。应用物料平衡计算与热平衡计算,根据国内某高炉原料条件与冶炼参数,主要计算分析铁水w(Si)对焦比、碳排放量的影响,得出了定性定量的关系:在本文的计算条件下,铁水w(Si)每升高0.1%,焦比吨铁增加4.54 kg,碳排放量吨铁增加7....  相似文献   

16.
良好的铁水质量是铸铁性能可靠性和稳定性的保证,而铁水中硫(S)含量和硅(Si)含量是衡量铁水质量的主要指标,因此在出铁前精准获取铁水S含量和Si含量具有非常重要的意义。实验提出一种结合主成分分析(PCA)和最小二乘支持向量机(LS-SVM)模型的铁水S含量和Si含量的预测方法。将某钢厂大型高炉的在线采集数据作为研究对象,首先对影响铁水中S含量和Si含量变化因素的数据做主成分分析,求取主成分作为模型的输入变量,其次建立最小二乘支持向量机预测模型对铁水S含量和Si含量进行预测。在S含量预测过程中,正则化参数gam和核函数参数sig分别取20、700时,预测误差最小,其均方根误差为0.001 2,仿真时间为0.423 105s;Si含量预测过程中正则化参数gam和核函数参数sig分别取40、500时预测误差最小,均方根误差为0.023 8,仿真时间为0.079 522s。最后将实验结果与传统最小二乘支持向量机(LS-SVM)和结合PCA的BP神经网络预测模型(PCA+BP神经网络)的结果对比,后两组对比实验关于S含量预测的均方根误差分别为0.001 5和0.001 4,仿真时间分别为1.32...  相似文献   

17.
18.
刘祥官  王文慧 《钢铁》2005,40(8):15-17,37
应用小波分析方法对高炉铁水硅含量进行预测。通过小波变换将铁水硅含量的时间序列依三重尺度分解成不同的层次,并对不同层次上的序列分别运用合适的自回归模型进行预测,然后通过序列重构得到原始时间序列的预测结果。利用山东莱钢1号高炉在线采集的数据作为实际预测案例,与原始时间序列的自回归模型预测结果比较,小波预测方法显著提高了预测命中率。  相似文献   

19.
郑皓  梁世标 《炼铁》1999,18(2):10-13
韶钢2号高炉近年来通过改善原燃烧质量、确保炉况稳定顺行、提高煤气利用率,使生铁含硅量不断降低。为了进一步降低生铁含硅量,必须继续做好原料管理和操作管理工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号