首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
张德乾 《中州煤炭》2016,(10):43-45,132
为研究采煤工作面上隅角瓦斯爆炸在采面联巷内的传播特征,采用U型并联管道系统模拟爆炸在实际巷道内的传播。结果表明,上隅角瓦斯爆炸冲击波在采煤工作面不规则巷道中传播时,爆炸冲击波和火焰陡然变化,出现爆轰;进、回风巷内冲击波进入上下山巷道出现叠加;冲击波经过进风巷与回风巷传播特征存在较大差异,冲击波在回风巷内属燃烧爆炸传播,而在进风巷内属一般空气区传播,上下山巷道及工作面属爆炸破坏较严重区域,应强化预防措施,减少瓦斯爆炸带来的损失。  相似文献   

2.
为研究在巷道空间里瓦斯爆炸冲击波的传播特性,采用ANSYS/LS-DYNA程序的流固耦合算法,建立巷道瓦斯爆炸物理模型,对巷道空间里瓦斯爆炸过程进行数值模拟,得到瓦斯爆炸过程中冲击波变化云图,并拟合了冲击波衰减变化规律.研究表明:瓦斯爆炸冲击波经历了从球面到平面冲击波的发展过程,最终冲击波逐渐衰减为常压状态,但在受限空间内瓦斯爆炸冲击波遇壁面会发生反射与叠加,因此要合理的设置泄压口;爆炸冲击波超压与距离成非线性关系,即爆炸冲击波超压与距离的平方根成反比.研究结果对瓦斯爆炸传播事故的预防和灾害控制有一定的指导作用.  相似文献   

3.
为了探索瓦斯在煤矿井下复杂巷网内爆炸后的超压演化规律及火焰传播特性,在实验室自行搭建了瓦斯爆炸试验系统,对甲烷体积分数为9.5%的瓦斯爆炸爆燃波传播规律进行了试验研究,并对瓦斯爆炸超压及火焰传播过程进行了数值模拟。试验与数值模拟结果表明:管网角联分支中,甲烷-空气预混气体爆炸后由于爆炸压力波的叠加,形成超压增高区域,但产生的火焰波很微弱,温度较低。并联分支中,随着爆燃波传播距离的增加,超压峰值和焰面传播速度呈逐渐减小的趋势,而火焰持续时间呈先增加、再减小的趋势。试验中火焰的最大传播距离为18.75 m,而数值模拟的传播距离为21.25 m,但试验值和模拟值的变化趋势一致。研究结论可对煤矿井下复杂巷道内瓦斯爆炸灾害的防控及救灾提供理论支持。  相似文献   

4.
为了防止煤与瓦斯突出后发生瓦斯逆流,结合流体动力学研究突出冲击波对防突风门和风筒防逆流装置的破坏失效机制.基于理论推导,得到了煤与瓦斯突出条件下的冲击波传播模型,给出作用在风门和风筒防逆流装置处的反射超压.利用突出能量传播模拟系统,模拟井下发生突出事故后冲击波在巷道中的传播,并将试验结果与理论计算和数值模拟结果进行对比.在此基础上利用Fluent对4种不同突出条件下冲击波在巷道内的传播进行模拟研究,并且将风门和风筒防逆流装置处的超压随时间变化数据输入LS-DYNA进行数值模拟.研究结果表明:实际的冲击波衰减比数值模拟和理论计算更加快,试验和模拟误差不大且总的变化规律是一致的,利用数值模拟手段研究冲击波传播规律是可行的;风筒防逆流装置处的冲击波超压峰值大于风门位置的超压峰值,且冲击波超压在第1个波峰出现后震荡下降;由于风筒中反射出的冲击波叠加,风门位置的超压峰值是在第2个波峰出现,突出压力和突出孔径越大,相应的冲击波超压峰值就越大.研究成果对防突风门和防逆流装置设计具有指导意义.  相似文献   

5.
瓦斯爆炸冲击波在管道拐弯情况下的传播特性   总被引:4,自引:2,他引:2       下载免费PDF全文
针对一般空气区从实验和数值模拟两方面对瓦斯爆炸冲击波在管道拐弯情况下的传播特性进行了研究。通过实验研究发现了一般空气区瓦斯爆炸冲击波超压衰减系数在管道不同拐弯角度情况下与冲击波初始超压以及管道拐弯角度有关系,并确立了相互之间的关系式。通过数值实验计算分析了一般空气区瓦斯爆炸冲击波在管道拐弯情况下的超压变化规律,得出了瓦斯爆炸冲击波在管道拐弯情况下的压力分布情况。将模拟结果和试验结果进行对比分析,验证了数值模拟结果的可靠性。  相似文献   

6.
为研究煤粉粒径对煤与瓦斯突出冲击波传播特征的影响,自主研制了一套突出粉煤—瓦斯两相流模拟实验系统,开展不同煤粉粒径条件下的突出模拟实验,突出过程中实时监测模拟巷道不同位置冲击波超压随时间的变化规律。实验结果表明:在各监测点冲击波超压呈现正相与负相交替变化的格局,冲击波超压峰值与突出腔体内煤粉粒径呈正相关关系;突出冲击波在巷道内的传播速度也受煤粉粒径的影响,即煤粉粒径越小,冲击波传播速度越小,且冲击波传播速度沿着巷道呈衰减趋势。  相似文献   

7.
为了掌握管道内瓦斯爆炸冲击作用特性,利用ANSYS/LS-DYNA对浓度为9.5%,填充长度为5 m的瓦斯在管道内爆炸产生冲击作用进行了数值模拟,分析了耦合效应对管道内瓦斯爆炸流场和冲击波超压的影响.研究结果表明:瓦斯爆炸瞬间,管道内坐标分别为A(0,0,2),B(0,0,4)测点的压力瞬间达到峰值,之后测点A,B的压力逐渐减小直至趋近于某一稳定值.而初始压力为大气压的测点C(0,0,6),D(0,0,8),E(0,0,10)依次达到超压峰值后逐渐地衰减趋近于大气压力.因此,在耦合和解耦合的2种情况下,不同测点的超压时程曲线走势基本一致.在解耦合条件下,管道轴向同心环等压线以均匀圆环的形式向开口方向传播;在耦合条件下,管道轴向同心环等压线以紊乱的等压线分布形式向开口端传播.因此,瓦斯爆炸流固耦合效应对冲击波等压线的分布有一定的影响,即改变流场分布.  相似文献   

8.
王健 《中国矿业》2021,30(10):154-159
目前对井下巷道瓦斯爆炸的模拟研究较多,但大部分研究存在缺少参考井下巷道具体参数依据的问题。为了更加准确地分析瓦斯爆炸冲击波的流场演化特征,以湖南省醴陵市马劲坳煤矿为研究对象,采用数值模拟软件对该煤矿井下巷道发生瓦斯爆炸时的温度场、应力场、冲击波传播规律及速度场的变化规律进行了较详细的分析,结合理论研究对模拟结果进行了较完善的阐述;同时研究了爆炸过程中产生的温度及超压载荷随时间变化的规律,得出温度及超压载荷变化的一般性规律公式;对瓦斯爆炸中巷道的开口端和封闭端的气体冲击波速度差异进行了重点研究,分析了高速流动气体传播过程及波动形式,得出气体和压力的不稳定状态是重要影响因素。研究结果表明:通过参考实际地质资料的模拟研究,得出急剧上升的温度和超压现象是破坏井下安全设施的主要因素,这为井下瓦斯爆炸防治提供重要研究基础。  相似文献   

9.
为进一步探究巷道截面变化情况下瓦斯爆炸传播规律的差异性,主要针对巷道截面突然缩小与巷道渐缩两种情况,对瓦斯爆炸传播动力特征进行Fluent数值仿真模拟。研究结果表明:突然缩小巷道内爆炸火焰的传播速度要明显大于渐缩巷道内爆炸火焰的传播速度。对于截面突然缩小巷道,瓦斯爆炸冲击波在巷道截面突变处峰值瞬间超压,达到最大值。对于截面逐渐变小巷道,爆炸冲击波峰值超压随着传播距离的增大而增大,但是整体上增大的幅度仍然不是很大。  相似文献   

10.
近年国内外学者对瓦斯爆炸抑爆隔爆技术的研究主要围绕抑爆剂、吸能材料和空腔等开展。文献指出空腔具有抑制瓦斯爆炸传播的功能,且抑爆性能受空腔体积大小影响。为探索体积不变条件下空腔尺寸特征对瓦斯爆炸传播抑制性能的影响,设计了体积为0.08 m~3长宽比分别为5/8,8/5的矩形钢质空腔,壁厚10 mm,并将其铺设在36 m长的大型瓦斯爆炸管道系统中开展实验研究,考察瓦斯爆炸火焰和冲击波超压经过空腔后的变化规律。结果表明:长宽比5/8空腔对爆炸火焰、冲击波传播均有抑制作用,长宽比8/5空腔对爆炸火焰有抑制作用,但对冲击波传播有增强作用。在此基础上建立数值模型,将体积为0.08 m~3长宽比分别为1/10,2/5,5/8,1,8/5,5/2的空腔铺设在管道系统中开展数值模拟研究,研究发现:空腔对瓦斯爆炸冲击波传播抑制作用取决于空腔长宽比,长宽比越小,空腔对冲击波传播抑制作用越强;且存在临界长宽比,当长宽比1时,空腔对冲击波超压传播具有抑制作用,当长宽比1时,空腔对冲击波传播具有增强作用,长宽比为5/2时,增强现象最明显。最后,分析了空腔长宽比影响瓦斯爆炸冲击波传播规律作用机理,空腔长宽比越大,在出口和入口能接收到的反射波就越多,反射波在出口和入口叠加后产生的冲击波超压也就越大,反之越小;空腔长宽比越大,在空腔内参与爆炸的预混气体越多,腔内爆炸越剧烈,产生的增量冲击波就越强,反之越弱;因此,长宽比越大,空腔对瓦斯爆炸冲击波传播抑制作用越差,反之抑制作用越好,当长宽比大于临界长宽比时,空腔会增强瓦斯爆炸冲击波传播。  相似文献   

11.
 为了探究煤矿瓦斯爆炸事故中瓦斯爆炸火焰锋面特征,在实验室模拟巷道的小型管道内进行瓦斯爆炸火焰传播实验。在管道内同一截面处,利用微细热电偶、离子探针、压力传感器及光电传感器同时测得了火焰锋面温度、离子电流强度、压力、光信号。对四种火焰锋面参数信号比较分析,结果表明:传播火焰阵面的火焰光信号、温度信号、离子电流信号稍快于压力信号,瓦斯浓度为10.17%的传播火焰在测点处火焰锋面最高温度值为1238.8℃,最高压力值为2.28atm,最高离子电流强度值为258nA;处理热电偶温度信号计算出的火焰锋面厚度为44.8cm和离子电流信号计算出的火焰锋面厚度为68.5cm,两者属于同一数量级。实验结论为进一步认识瓦斯爆炸火焰锋面在瓦斯爆炸事故中的作用和矿井防爆设备和预警设计提供一定的参考依据。  相似文献   

12.
工作面采掘空间流场特性数值模拟研究   总被引:2,自引:1,他引:1  
王家臣  赵洪宝 《金属矿山》2010,39(10):151-153,180
在U型通风方式下,以CFD数值模拟软件为手段,对工作面采掘空间的流场分布和瓦斯浓度分布规律、空气密度变化规律进行了数值模拟研究。模拟试验结果表明:沿风流自进风巷、工作面至回风巷的过程中,风流场变化呈先简单、后复杂、再简单的趋势,在进风巷和回风巷与工作面采掘空间交叉处,风流场变化最复杂;工作面采掘空间的瓦斯浓度沿风流方向呈逐渐增加趋势,仅在局部位置发生较大变化,且煤壁侧的瓦斯浓度明显高于采空区侧瓦斯浓度;U型通风条件下,工作面靠近进风巷端部靠近煤壁侧和上隅角瓦斯集聚区最可能出现局部瓦斯超限的区域;上隅角瓦斯集聚区形状呈三角形。  相似文献   

13.
一九三〇煤矿是新疆焦煤集团原煤生产骨干矿井之一,该矿井因受F4-2断层影响,二采区36211综采工作面巷道沿中线掘进,36211回风巷与原26211运输巷间最大煤柱达到95 m,经过方案比较,合理设计,在现36211综采工作面回风巷上段三角煤柱设计一残采工作面,为解决残采工作面安装液压支架等设备问题,在36211回风巷设计安装绞车等辅助设施,采用反向安装设备技术,实现了高效、快速、安全安装。  相似文献   

14.
为了研究巷道断面突变对突出冲击波传播的影响和冲击波超压冲量的破坏作用,利用自行搭建的煤与瓦斯突出冲击波传播实验系统,结合三维变截面巷道冲击波传播数值模型的建立,基于实验室实验和数值模拟的方法,研究了不同初始瓦斯压力下突出冲击波在断面突变巷道中的传播规律。结果表明:突出后巷道内压力变化可划分为冲击扰动初始阶段和压力衰减阶段,其中冲击扰动初始阶段冲击波超压峰值大于压力衰减阶段压力峰值,且前者超压冲量小于后者;以初始压力为0.6 MPa为例,计算得出压力衰减阶段超压冲量比冲击扰动初始阶段高52.4%,总冲量随冲击波传播呈先衰减后增大的规律;突出发生后,冲击波超压先随距离发生衰减,当冲击波从断面突变前的大直径巷道传入后方小直径巷道,因壁面反射形成局部高压区,超压强度在截面前0.65 m处增大,出现先衰减后增大的变化规律。  相似文献   

15.
超细水雾-多孔材料协同抑制瓦斯爆炸实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
余明高  刘梦茹  温小萍  裴蓓 《煤炭学报》2019,44(5):1562-1569
为探究超细水雾与多孔介质在协同作用下对多孔介质淬熄效果以及多孔介质上游爆炸超压的影响,自行设计并搭建了尺寸为80 mm×80 mm×1 000 mm透明有机玻璃瓦斯爆炸管道实验平台,研究超细水雾质量分数、多孔材料孔径及孔隙率对9. 5%甲烷压的协同抑制效果。实验结果表明,改变超细水雾质量分数、多孔材料孔径以及孔隙率,在多孔材料上游,最大火焰传播速度和最大爆炸超压有着显著变化,随着超细水雾质量分数增加,火焰锋面传播速度峰值和爆炸超压逐渐减小,爆炸超压峰值出现时间随之缩短,而随着孔径的减小,火焰锋面传播速度也逐渐减小,压力衰减率明显增加。同时,超细水雾和多孔材料的组合方式对瓦斯爆炸具有耦合抑制作用,管道内通入超细水雾可吸收反应区大量热能,降低反应速率与火焰传播速度,此外多孔材料的存在吸收了部分前驱冲击波,破坏正反馈机制,因此两者协同抑制优于单一抑制效果。放置在管道中的多孔材料使得传播火焰淬熄,且添加的超细水雾降低了多孔材料上游的超压,但是一旦多孔介质淬熄失败,火焰湍流加剧,可能会导致更为严重的事故发生。此外,与9. 5%甲空气预混气相比,孔隙率为87%,孔隙密度为20 PPI和超细水雾质量浓度为1 453. 1 g s,下降比例达到44. 23%,且多孔材料上游的最大爆炸超压为6. 13 kPa,降低了40. 62%,抑制效果最明显。  相似文献   

16.
介绍了长平矿根据现场情况,通过在2304工作面回风巷的相邻巷道(2304泄水巷)内打顶板倾向钻孔进行抽放采空区瓦斯,成功解决了该工作面上隅角和回风巷瓦斯超限难题,保证了工作面安全、持续、稳定的生产。  相似文献   

17.
黄光球  陆秋琴 《矿冶》2016,25(4):6-10
为了解决空气冲击波在尾端具有急转弯的巷道中传播时的波阵面参数计算问题,依据具有空气冲击波传播阻抗的空气冲击波关系式,推导出了井下空气冲击在尾端具有急转弯的巷道中传播时的波阵面参数的理论计算公式,这组公式考虑到了突然转弯巷道结构对冲击波传播所带来的额外影响,能够准确计算出在范围很大、巷道走向变化很大条件下的空气冲击波波阵面传播速度、波阵面后空气流速、空气密度、声速、温度、超压等参数,为控制井下空气冲击波的危害提供了理论依据。  相似文献   

18.
张保东  张开智  刘辉  郭松 《煤矿安全》2012,43(6):125-128
安顺煤矿属于煤与瓦斯突出矿井,原有的布置瓦斯专排巷方案在解决上隅角、回风巷瓦斯超限问题时,存在受瓦斯抽采影响掘进速度慢、煤损增加等缺点。结合安顺煤矿具体实际,在9106工作面成功地进行了宽面掘进一次成双巷无煤柱开采实践:先掘1个宽断面巷道,再构筑隔离墙将巷道隔离成回风巷和瓦斯专排巷,巷间无煤柱开采;工作面回采时,隔离墙充当巷旁支护将瓦斯巷保留,后期瓦斯专排巷煤壁刷帮,作为下一区段的运输巷实现区段无煤柱开采。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号