首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
颗粒增强金属基复合材料的热导率   总被引:6,自引:0,他引:6  
本文研究了颗粒增强铝合金(LD2)复合材料的热导率与颗粒的种类、含量、粒度和在基体中的分布情况之间的关系。制作了不同颗粒含量和粒度的SiCp/LD2和Al2O3p/LD2复合材料试样,用定常热流法测定其热导率。将测试结果与用混合热阻模型推得计算式提供的理论值进行比较,根据测试值和理论值比较的结果,对该计算式提出考虑到颗粒粒度对复合材料热导率影响的修正。得到综合考虑了颗粒的种类、含量、粒度和在基体中均匀分布程度影响的颗粒增强金属基复合材料热导率的理论计算式。  相似文献   

2.
高导热金属基复合材料的热物理性能   总被引:2,自引:0,他引:2  
于家康  梁建芳  王涛 《功能材料》2004,35(Z1):1668-1671
分别采用无压浸渗、气压浸渗、内氧化技术制备了高导热Al/SiC、Al/C、Cu/Al2O3复合材料.研究了增强相和界面对这三种复合材料的热导率和热膨胀系数的影响,并对这些性能进行了理论分析和数值模拟.当颗粒尺寸与界面层厚度之比固定时,颗粒尺寸对Al/SiC复合材料热导率影响很小,但界面热导率对其影响很大;Al/SiC复合材料的CTE随温度的升高而增加,随SiO2层厚度的增加而减小;碳纤维中混杂3%SiC颗粒有利于改善纤维的分布,降低Al/C复合材料的缺陷,并提高其热导率;压力加工增加了Cu/Al2O3的致密度,也提高了其热导率;可用Schapery和Kerner模型计算复合材料的热膨胀系数,用Hasselman-Johnson模型计算热导率.  相似文献   

3.
利用计算机生成不同的AlN/橡胶复合材料等效结构单元,基于三维格子玻尔兹曼模型计算了复合材料的等效热导率。实验制备了AlN/橡胶复合材料,并测定了不同填充量下复合材料的热导率,用以验证模型的有效性。将LBM计算结果与实验结果及Maxwell、Bruggeman、Nielsen等模型进行了比较,发现本文数值计算结果与Maxwell模型吻合较好,相比较于Bruggeman模型与Nielsen模型更加接近实验值。研究了AlN颗粒尺寸及分布方式对复合材料导热性能的影响。结果表明,一定体积分数范围内,粒径较小的AlN颗粒填充橡胶复合材料的等效热导率较大,当体积分数增大到20%,粒径较大的复合材料内先开始形成导热网络,大大提高了热导率;随机分布比均匀分布方式下的复合材料的等效热导率大,不同的粒子空间分布结构是影响复合材料热导率的关键因素。  相似文献   

4.
采用有限元方法对SiCp/Al复合材料的导热性能进行了数值模拟, 建立了含界面相颗粒增强铝基复合材料测试模型, 研究了不同界面相种类、厚度对复合材料热导率的影响。结果表明: 当界面相与SiC/Al结合理想时, 且界面相在颗粒表面呈连续分布时, 复合材料热导率随着界面层热导率的增加而增大, 但增加的幅度由快变慢; 复合材料热导率随界面层厚度的变化取决于界面层厚度t与颗粒粒径a的比值, 当t/a很小或t/a较大时, 热导率随界面层厚度的变化很小, 当t/a较小时, 热导率随界面层厚度的变化则与界面层热导率有关。  相似文献   

5.
采用压力融渗的方法制备了高金刚石体积分数的Diamond/ Cu-Cr复合材料.研究了金刚石粒径对复合材料热导率的影响,并依据理论模型计算了界面热阻值.实验结果显示,金刚石颗粒平均粒径分别为40μm,100μm,200μm的Diamond/Cu-Cr复合材料的热导率依次增高,与理论模型计算结果一致.其中,颗粒粒径为200μm的Diamond/Cu-Cr复合材料的热导率达到736.15W/mK.当金刚石的颗粒粒径增大时,其比表面积降低,由于金刚石与基体合金接触的表面热阻高,减少金刚石表面积有助于提高复合材料的热导率.但是,当金刚石的颗粒粒径增大到一定程度时,复合材料二次加工的难度增大,表面质量降低,对工业应用造成困难.  相似文献   

6.
粒子填充聚合物最通用的导热模型是Y.Agari模型.低填充量下,复合材料的热导率实验值与Y.Agari预测值符合良好,高填充量时却出现显著偏离.本工作以球形氧化铝颗粒填充室温硫化硅橡胶为例,阐释了产生这一现象的原因;引入粉体表面临界黏附层厚度H0的概念,建立了聚合物中球形颗粒堆积的新模型;在Y.Agari方程基础上,引入气孔率φ,建立了高填料体积分数下热导率计算的新公式.新的热导率计算公式在球形氧化铝颗粒填充室温硫化硅橡胶中得到了验证.本工作还对此公式在异径二元球形颗粒填充聚合物时的适用性进行了探索.异径二元球形氧化铝(填充量高且总填充量为定值)填充室温硫化硅橡胶时,热导率随异径颗粒的比例而发生变化,本工作用新的热导率计算公式解释了此现象.  相似文献   

7.
使用高压方法制备了高致密性金刚石颗粒增强铜基复合材料,研究了增强相金刚石颗粒粒度对复合材料性能的影响。对复合材料的致密度、成分、硬度以及热导率等方面的影响进行表征。研究结果表明使用高压方法可以有效提高复合材料致密度和样品纯净度,样品的相对密度在97.07%~99.85%之间;随着金刚石颗粒粒度的减小,复合材料的硬度而升高,热导率略有下降。布氏硬度在53~68.0HB之间;热导率在310~320 W/(m·K)之间。高压方法为制备复合材料提供了新手段和思路。  相似文献   

8.
一、前言 金属基陶瓷颗粒增强复合材料的力学、物理性能不仅与颗粒尺寸、加入量及宏观分布有关,而且与颗粒的微观分布有关。而微观分布又取决于颗粒在制备过程中马固液界面的交互作用。 60年代,国外一些学者以水和有机物为对象,研究颗粒与固液界面的交互作用,即颗粒在固液界面前沿的行为。Ohlmann和Numann是其中的典型代表,他们建立了关于颗粒被固液界面吞陷的临界生长速度判据;当固液界面的生长速度高于临界生长速度,颗粒将会被固液界面吞陷,在微观分布上表现为颗粒分布在初晶内。Stenfanscu考虑到实际复合材料在凝固过程中熔体的粘度、颗粒与液体的热导率、界面前沿的温度梯度等因素的影响,也建立了临界生长速度判据,并且采用定向凝固的方法研究了界面前沿的温度梯度、凝固速度与颗粒微观分面的关系。然而由于影响固液界面行为的因素较多,建立包含所有因素并能确切反映颗粒分布规律的模型十分困难,Zubko和Surrapa等分别提出了热导率判据、热扩散比判据等经验判据。D.Lloyd认为,用理论判据分析实际复合材料中颗粒与固液界面的交互作用尚有一定的困难,而采用经验判据较为合适;对于SiCp/A复合材料,能够满足热导率判据,热扩散比判据中关于颗粒被吞陷的条件,但在他制备的SiCp/Al复合材料样品中未发现  相似文献   

9.
采用真空实型铸渗(V-EPC)工艺制备碳化钨颗粒增强钢基表层复合材料,并测试其热膨胀系数和热导率,研究了工艺参数对热物理特性的影响。结果表明,随着测试位置与表层复合材料过渡区间距的增大热膨胀系数逐渐减小,而在相同位置同一温度下表层复合材料的热膨胀系数随着碳化钨颗粒的增大而增大。不同粒度碳化钨颗粒增强表层复合材料的热导率,均随着温度的升高呈增大趋势。当温度较低(40℃与105℃)时,不同碳化钨颗粒粒度的复合材料的热导率相差不大。但是当温度升高到一定值(大于170℃)时,复合材料的热导率随着碳化钨颗粒粒度的增大呈降低趋势。在预制层中加入Ni粉,可降低表层复合材料的热膨胀系数和热导率。  相似文献   

10.
采用随机顺序添加算法(RSA),应用均匀化理论建立了三维代表体积单元(RVE)模型,数值研究了氮化铝均匀分布与随机分布下三元乙丙橡胶复合材料的导热性能。制备了氮化铝(AlN)/三元乙丙橡胶复合材料,并测试了不同填充量下体系的热导率。将数值模拟得到的热导率与实验结果及理论模型进行对比,结果发现,随着氮化铝填充量的增加,导热网链的形成更加容易,复合材料的热导率随之逐步增大;在相同体积分数下,实验测量值最大;均匀分布时的数值结果与Maxwell模型及Hamilton-Crosser模型结果基本一致;填充粒子在基体中的随机性分布会导致热导率的波动,其平均值要高于均匀分布模拟值;随机分布模型模拟结果更贴近实验测量值,可以用来更好地预测球形颗粒填充复合材料的导热性能。  相似文献   

11.
A polymer composite was prepared by embedding fillers made of self-passivated aluminum particles in two kind of sizes, micrometer size and nanometer size with different volume proportions into polyvinylidene fluoride matrix. The thermal conductivity and dielectric properties of the composite were studied. The results showed that the thermal conductivity of composites was significantly increased to 3.258 W∕mK when the volume proportion of micrometer size Al particles to nanometer size Al particles is at 20:1, also the relative permittivity was about 75.8 at 1 MHz. The effective simulation model values were in good accordance with experimental results.  相似文献   

12.
本文研究了用常规粉末冶金工艺制备颗粒增强铜基热沉复合材料的机械物理性能。研究结果表明 :采用W和Al2 O3颗粒增强铜基热沉复合材料 ,可以有效地改善烧结铜材料的硬度和抗拉强度 ,提高抗高温回复性能 ;W颗粒增强铜基热沉复合材料比Al2 O3颗粒增强铜基热沉复合材料的热导率要高  相似文献   

13.
Abstract

The characterisation of thermal expansion coefficient and thermal conductivity of Al–Si matrix alloy and Al–Si alloy reinforced with fine SiCp (5 and 20 wt-%) composites fabricated by stir casting process are investigated. The results show that with increasing temperature up to 350°C, thermal expansion of composites increases and slowly reduces when the temperature reaches to 500°C. The values of both thermal expansion and conductivity of composites are less than those for Al–Si matrix. Microstructure and particles/matrix interface properties play an important role in the thermal properties of composites. Thermal properties of composites are strongly dependent on the weight percentage of SiCp.  相似文献   

14.
放电等离子烧结制备Diamond/Al复合材料   总被引:1,自引:0,他引:1       下载免费PDF全文
采用放电等离子烧结法(SPS)制备了Diamond/Al复合材料,研究了金刚石粒径、成分配比、工艺参数等对复合材料的导热性能的影响。结果表明,SPS可以得到导热性能较好的Diamond/Al复合材料,致密度是影响该材料导热性能的最重要因素。在实验确定的金刚石体积分数50%,金刚石粒径70 μm,温度550℃、压力30 MPa的工艺条件下,所制备的材料致密度较高,热导率为182 W/(m·K),比相同条件下纯铝粉烧结体的热导率提高了34.8%,表明金刚石的添加对烧结铝基材料导热性能有明显的改善作用。   相似文献   

15.
The thermal behavior of hollow conductive particles filled in epoxy resin has been investigated using 3D finite element computation. The effect of the filler concentrations associated with the particle/matrix interfacial resistance on the effective thermal conductivity of the composites was considered. The relationship between the out-of-plane effective thermal conductivity, the wall thickness of the hollow particles, and the ratio of the thermal conductivities of the filler to the matrix material were also taken into account. The numerical results show an increase of the effective thermal conductivity with increasing wall thickness of the hollow particles. However, for a large contact resistance and/or for a high effective thermal conductivity, it is shown that the contact resistance has a dominant influence on the effective thermal conductivity of the composites. The numerical results were also compared to some well-known analytical effective thermal conductivity models.  相似文献   

16.
两种粒径颗粒混合增强铝基复合材料的导热性能   总被引:6,自引:1,他引:5       下载免费PDF全文
选用粒径为20μm 和60μm 的SiC 颗粒, 采用挤压铸造方法制备了基体分别为工业纯铝L2 、LD11(Al-12 %Si) 和AlSi20 (Al-(18~21) %Si) 的复合材料, 研究了材料的导热性能。在等比表面积的基础上, 提出了等效颗粒直径的概念, 解决了两种粒径颗粒混合增强铝基复合材料导热率的预测问题。结果表明, SiCP/ Al 复合材料具有较为优异的导热率, 且LD11 基与AlSi20 基复合材料的导热率大于基体合金的导热率, 这与颗粒的等效直径大于临界粒径且颗粒导热率大于基体导热率有关;但复合材料的导热率随着基体中Si 含量的增加而降低。  相似文献   

17.
Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10−6 to 6 × 10−6/K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al2Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.  相似文献   

18.
The existence of interfacial carbides is a well-known phenomenon in Al/diamond composites, although quantitative analyses are not described so far. The control of the formation of interfacial carbides while processing Al(Si)/diamond composites is of vital interest as a degradation of thermophysical properties appears upon excessive formation. Analytical quantification was performed by GC–MS measurements of gaseous species released upon dissolving the matrix and interfacial reaction products in aqueous NaOH solutions and the CH4/N2 ratio of the evolving reaction gases can be used for quantification. Although the formation of interfacial carbides is significantly suppressed by adding Si to Al, also a decline in composite thermal conductivity is observed in particular with increasing contact time between the liquid metal and the diamond particles during gas pressure infiltration. Furthermore, surface termination of diamond particles positively affects composite thermal conductivity as oxygenated diamond surfaces will result in an increase in composite thermal conductivity compared to hydrogenated ones. In order to understand the mechanisms responsible for all impacts on the thermal conductivity and thermal conductance behaviour, the metal/diamond interface was electrochemical etched and characterized by SEM. Selected specimens were also cut by an ultrashort pulsed laser system to characterize interfacial layers at the virgin cross section in the reactive system Al/diamond.  相似文献   

19.
This work presents an efficient technique to improve compressibility and thermal properties of Al–Al2O3 nanocomposites. The compressibility behavior was examined by cold compaction test, and the thermal conductivity was calculated through the measured electrical resistivity of the prepared samples. The results showed that the addition of Al2O3 to Al matrix improves the compressibility behavior of the produced nanocomposite. However, it has a negative effect on the thermal conductivity of the produced composite. Adding Al2O3 hard particles accelerates the fracturing process which improves the compressibility behavior. However, it causes some agglomeration at the grain boundaries which reduce the thermal conductivity. The addition of Mg to Al–Al2O3 nanocomposite improves both the compressibility behavior and the thermal conductivity. This is due to the great reduction in the particle size and the agglomeration of reinforcement particles on the grain boundaries which improve the compressibility behavior and the thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号