首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malate is an important taste component of sake (a Japanese alcoholic beverage) that is produced by the yeast Saccharomyces cerevisiae during alcoholic fermentation. A variety of methods for generating high malate‐producing yeast strains have been developed to date. We recently reported that a high malate‐producing strain was isolated as a mutant sensitive to dimethyl succinate (DMS), and that a mutation in the vacuolar import and degradation protein (VID) 24 gene was responsible for high malate productivity and DMS sensitivity. In this work, the relationships between heterozygous and homozygous mutants of VID24 and malate productivity in diploid sake yeast were examined and a method was developed for breeding a higher malate‐producing strain. First a diploid yeast was generated with a homozygous VID24 mutation by genetic engineering. The homozygous integrants produced more malate during sake brewing and grew more slowly in DMS medium than wild‐type and heterozygous integrants. Thus, the genotype of the VID24 mutation influenced the level of malate production and sensitivity to DMS in diploid yeast. Then a homozygous mutant from a heterozygous mutant was obtained without genetic engineering by ultraviolet irradiation and culturing in DMS with nystatin enrichment. The non‐genetically modified sake yeast with a homozygous VID24 mutation exhibited a higher level of malate productivity than the parent heterozygous mutant strain. These findings provide a basis for controlling malate production in yeast, and thereby regulating malate levels in sake. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

2.
Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small‐scale sake‐brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Sake yeast can produce high levels of ethanol in concentrated rice mash. While both sake and laboratory yeast strains belong to the species Saccharomyces cerevisiae, the laboratory strains produce much less ethanol. This disparity in fermentation activity may be due to the strains' different responses to environmental stresses, including ethanol accumulation. To obtain more insight into the stress response of yeast cells under sake brewing conditions, we carried out small-scale sake brewing tests using laboratory yeast strains disrupted in specific stress-related genes. Surprisingly, yeast strains with disrupted ubiquitin-related genes produced more ethanol than the parental strain during sake brewing. The elevated fermentation ability conferred by disruption of the ubiquitin-coding gene UBI4 was confined to laboratory strains, and the ubi4 disruptant of a sake yeast strain did not demonstrate a comparable increase in ethanol production. These findings suggest different roles for ubiquitin in sake and laboratory yeast strains.  相似文献   

4.
Fatty acid activation gene (FAA1) in sake yeast Kyokai no. 701 (K701) was disrupted to investigate the accumulation of ethyl caproate in sake mash. Ethyl caproate, recognized as an important apple-like flavor in sake, is generated by fatty acid synthesis in yeast cells. The disruptant for the FAA1 gene (K701Δfaa1) exhibited a reduced growth rate in a medium containing cerulenin and myristic acid or oleic acid compared with that of the parental strain (K701). In a sake brewing test in which the rice used was polished to 60% of its original size, the fermentation ability of K701Δfaa1 was inferior to that of K701 but the production of ethyl caproate by K701Δfaa1 was 1.6-fold higher than that by K701. These results suggest that the FAA1 gene in sake yeast plays an important role in sake brewing and the accumulation of ethyl caproate.  相似文献   

5.
A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.  相似文献   

6.
Sake yeasts take up gamma-aminobutyric acid (GABA) derived from rice-koji in the primary stage of sake brewing. The GABA content in sake brewed with the UGA1 disruptant, which lacked GABA transaminase, was higher than that brewed with the wild-type strain K701. The UGA1 disruptant derived from sake yeast could not grow on a medium with GABA as the sole nitrogen source. We have isolated the sake yeast mutants of K701 that were unable to grow on a medium containing GABA as the sole nitrogen source. The growth defect of GAB7-1 and GAB7-2 mutants on GABA plates was complemented by UGA1, which encodes GABA transaminase, and UGA2, which encodes succinic semialdehyde dehydrogenase (SSADH), respectively. DNA sequence analysis revealed that GAB7-1 had a homozygous nonsense mutation in UGA1 and GAB7-2 had a heterozygous mutation (G247D) in UGA2. The GABA transaminase activity of GAB7-1 and the SSADH activity of GAB7-2 were markedly lower than those of K701. These GAB mutants displayed a higher intracellular GABA content. The GABA contents in sake brewed with the mutants GAB7-1 and GAB7-2 were 2.0 and 2.1 times higher, respectively, than that brewed with the wild-type strain K701. These results suggest that the reduced function of the GABA utilization pathway increases the GABA content in sake.  相似文献   

7.
Standard brewing yeast cannot utilize larger oligomers or dextrins, which represent about 25% of wort sugars. A brewing yeast strain that could ferment these additional sugars to ethanol would be useful for producing low‐carbohydrate diabetic or low‐calorie beers. In this study, a brewing yeast strain that secretes glucoamylase was constructed by mating. The resulting Saccharomyces cerevisiae 278/113371 yeast was MAT a/α diploid, but expressed the glucoamylase gene STA1 . At the early phase of the fermentation test in malt extract medium, the fermentation rate of the diploid STA1 strain was slower than those of both the parent strain S. cerevisiae MAFF113371 and the reference strain bottom‐fermenting yeast Weihenstephan 34/70. At the later phase of the fermentation test, however, the fermentation rate of the STA1 yeast strain was faster than those of the other strains. The concentration of ethanol in the culture supernatant of the STA1 yeast strain after the fermentation test was higher than those of the others. The concentration of all maltooligosaccharides in the culture supernatant of the STA1 yeast strain after the fermentation test was lower than those of the parent and reference strains, whereas the concentrations of flavour compounds in the culture supernatant were higher. These effects are due to the glucoamylase secreted by the constructed STA1 yeast strain. In summary, a glucoamylase‐secreting diploid yeast has been constructed by mating that will be useful for producing novel types of beer owing to its different fermentation pattern and concentrations of ethanol and flavour compounds. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

8.
We determined the genetic background that would result in a more optimal display of heterologously expressed β-glucosidase (BGL) on the cell surface of yeast Saccharomyces cerevisiae. Amongst a collection of 28 strains carrying deletions in genes for glycosylphosphatidyl inositol (GPI)-anchored proteins, the Δsed1 and Δtos6 strains had significantly higher BGL-activity whilst maintaining wild type growth. Absence of Sed1p, which might facilitate incorporation of anchored BGL on the cell-surface, could also influence the activity of BGL on the cell surface with the heterologous gene being placed under the control of the SED1 promoter. For the evaluation of its industrial applicability we tested this system in heterologous and homogenous SED1-disruptants of sake yeast, a diploid S. cerevisiae strain, in which either the SED1 ORF or the complete gene including the promoter was deleted by use of the high-efficiency loss of heterozygosity method. Evaluation of disruptants displaying BGL showed that deletion of the SED1 ORF enhanced BGL activity on the cell surface, while additional deletion of the SED1 promoter increased further BGL activity on the cell surface. Compared to heterozygous disruption, homozygous disruption resulted generally in a higher BGL activity. Thus, homozygous deletion of both SED1 gene and promoter resulted in the most efficient display of BGL reaching a 1.6-fold increase of BGL-activity compared to wild type.  相似文献   

9.
A study has been made of the sporulating behaviour of twenty selected brewing strains of yeast, and the mating activity of the products of sporulation. ‘Lager’ yeasts (strains of Saccharomyces carlsbergensis) in general sporulated to a lesser degree and more slowly than ‘ale’ yeasts (strains of Saccharomyces cerevisiae) and produced 1-or 2- spored asci compared with 2-or 3- spored asci for the latter yeasts. Most of the parent strains of S. cerevisiae were shown to be heterozygous for mating type, and they were all probably either triploid or aneuploid. Two of the strains of S. carlsbergensis were apparently homozygous for mating type and also triploid or aneuploid. The compatibility system favours outbreeding of yeasts, ‘ale’ yeasts being more compatible with ‘lager’ yeasts than with other ‘ale’ yeasts.  相似文献   

10.
Beer barley LTP1 in beer is an important component of beer foam, and it participates in the formation of beer foam. The digestion of beer barley LTP1 by proteinase A from brewing yeast leads to the decline of beer foam stability, especially for the unpasteurized beer. The objective of this study was to construct an industrial brewing yeast strain to secrete recombinant barley LTP1 into fermenting wort during beer fermentation for the foam stability improvement. We constructed barley LTP1 expression cassette and transformed into the host industrial yeast cells to replace partial PEP4 alleles using homologous recombination method. The expression of b-LTP1 was under control of the constitutive yeast ADH1 promoter, and the concentration of recombinant barley LTP1 secreted by recombinants reached 26.23 mg/L after incubation in YEPD medium for 120 h. The PrA activity of the recombinant strain declined compared with the host strain. The head retention of beer brewed with the recombinant industrial strain (326 ± 12 s) was improved when the host strain WZ65 (238 ± 7 s) and the constructed strain S.c-P-1 (273 ± 10 s) with partial PEP4 gene deficiency were used as control. The present study may provide reference for brewing industries and researches on beer foam stability.  相似文献   

11.
Genetically modified industrial yeast ready for application   总被引:1,自引:0,他引:1  
Tremendous progress in the genetic engineering of yeast had been achieved at the end of 20th century, including the complete genome sequence, genome-wide gene expression profiling, and whole gene disruption strains. Nevertheless, genetically modified (GM) baking, brewing, wine, and sake yeasts have not, as yet, been used commercially, although numerous industrial recombinant yeasts have been constructed. The recent progress of genetic engineering for the construction of GM yeast is reviewed and possible requirements for their application are discussed. 'Self-cloning' yeast will be the most likely candidate for the first commercial application of GM microorganisms in food and beverage industries.  相似文献   

12.
In the traditional (kimoto) method of sake (Japanese rice wine) brewing, Saccharomyces cerevisiae yeast cells are exposed to lactate, which is produced by lactic acid bacteria in the seed mash. Lactate promotes the appearance of glucose-repression-resistant [GAR+] cells. Herein, we compared the resistance to glucose repression among kimoto, industrial, and laboratory yeast strains. We observed that the frequencies of the spontaneous emergence of [GAR+] cells among the kimoto strains were higher than those among the industrial and laboratory strains. The fermentation ability of a kimoto yeast (strain U44) was lower than that of an industrial strain (K701), as [GAR+] cells generally showed slower ethanol production. The addition of lactate decreased the fermentation abilities of the K701 strain by increasing the number of [GAR+] cells, but it did not affect those of the U44 strain. These results suggest that lactate controlled fermentation by promoting the appearance of [GAR+] cells in the industrial sake strains but not in the kimoto strains.  相似文献   

13.
Sake yeasts are used for sake brewing and have a crucial role in the quality of sake, since they produce not only ethanol but also various compounds that provide sake flavors. Therefore, the appropriate selection and monitoring of a strain used in sake mash is important. However, the identification of specific sake yeast strains has been difficult, because sake yeasts have similar characteristics in taxonomic and physiological analyses. We found amplified fragment length polymorphisms (AFLPs) in the PCR products of the AWA1 gene of sake yeast strains. The AWA1 gene encodes a cell wall protein that is responsible for foam formation in sake mash. This polymorphism of the AWA1 gene can be used for the identification of sake yeast strains.  相似文献   

14.
15.
Screening of drug‐resistant mutants of sake yeast strains has been a major method for creation of superior strains. We attempted to create a valproic acid (VPA)‐resistant mutant strain from sake yeast Kyokai No. 7 (K7). VPA is a branched‐chain fatty acid and is an inositol synthesis inhibitor in mammals and yeast. We succeeded in isolating a mutant of strain K7 that can survive long‐term in a VPA‐containing medium. This strain, K7‐VPALS, is significantly more resistant to not only VPA‐induced cell death but also ethanol in comparison with the parent strain. Further experiments showed that the new strain is likely to have a deficiency in inositol and/or phosphatidylinositol synthesis. The major characteristics of sake brewed by strain K7‐VPALS (compared with K7) were lower amino acidity, higher isoamyl acetate content without an increase in the isoamyl alcohol level and changes in constituent organic acids, particularly higher malate and succinate but lower acetate concentrations. In addition, taste sensor analysis revealed that K7‐VPALS‐brewed sake has milder sourness and higher saltiness or richness than K7‐brewed sake does. High isoamyl acetate production may be related to a deficiency in phosphatidylinositol because this compound directly inhibits alcohol acetyltransferase, an enzyme responsible for isoamyl acetate synthesis. Strain K7‐VPALS grew more rapidly than the parental strain did in a medium containing acetate as a sole carbon source, indicating that K7‐VPALS effectively assimilates acetate and converts it to malate and succinate through the glyoxylate cycle. Thus, strain K7‐VPALS shows improved characteristics for brewing of high‐quality sake. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

16.
A procedure is described whereby the cytoplasmically-inherited killer character of a laboratory strain of Saccharomyces cerevisiae is transferred to a brewing yeast strain. Neither preparation of protoplasts of the brewing yeast nor mutation of its nuclear genes are required for this process. The brewing yeast killer strains produced have the advantages over their parent brewing cell that they kill sensitive yeasts and are immune to the killing action of certain killer yeasts. The method described offers significant advantages over the process of transformation as a means of genetically manipulating commercial yeasts.  相似文献   

17.
The sake (traditional Japanese alcoholic beverage) yeast mutant A1 was previously isolated as a strain resistant to an isoprenoid analog. This strain is used for industrial sake brewing because of its increased production of isoamyl acetate. In this study, a physiological event was identified which was closely related to the elevation of alcohol acetyltransferase (AATase) activity in strain A1. This finding was applied for the isolation of another mutant with an improved capacity for flavour compound production. Strain A1 revealed an additional phenotype showing resistance to Cu2+, as seen from its growth and isoamyl acetate production, even in a medium with the copper ion at 6 mM. Mutant strains were successfully isolated with increased isoamyl acetate production capacity from sake yeast strain 2NF on the basis of a Cu2+‐resistant phenotype at a high yield. Among them, strain Cu7 was characterized by its ability to produce isoamyl acetate at the highest concentration under condition where isoamyl alcohol (its precursor) was accumulated to the lowest extent. Such a phenotype of strain Cu7 is applicable for the practical production of an alcoholic beverage of excellent quality in terms of flavour.  相似文献   

18.
19.
In the yeast Saccharomyces cerevisiae, the yeast episomal plasmid (YEp), containing a partial sequence from a natural 2-μm plasmid, has been frequently used to induce high levels of gene expression. In this study, we used Japanese sake yeast natural cir0 strain as a host for constructing an entire 2-μm plasmid with an expression construct using the three-fragment gap-repair method without Escherichia coli manipulation. The 2-μm plasmid contains two long inverted repeats, which is problematic for the amplification by polymerase chain reaction. Therefore, we amplified it by dividing into two fragments, each containing a single repeat together with an overlapping sequence for homologous recombination. TDH3 promoter-driven yEmRFP (TDH3p-yEmRFP) and the URA3 were used as a reporter gene and a selection marker, respectively, and inserted at the 3′ end of the RAF1 gene on the 2-μm plasmid. The three fragments were combined and used for the transformation of sake yeast cir0 ura3- strain. The resulting transformant colonies showed a red or purple coloration, which was significantly stronger than that of the cells transformed with YEp-TDH3p-yEmRFP. The 2-μm transformants were cultured in YPD medium and observed by fluorescence microscopy. Almost all cells showed strong fluorescence, suggesting that the plasmid was preserved during nonselective culture conditions. The constructed plasmid maintained a high copy state similar to that of the natural 2-μm plasmid, and the red fluorescent protein expression was 54 fold compared with the chromosomal integrant. This vector is named YHp, the Yeast Hyper expression plasmid.  相似文献   

20.
The bottom‐fermenting lager yeast Saccharomyces pastorianus has been proposed to be allotetraploid, containing two S. cerevisiae (Sc)‐type and two S. bayanus (Sb)‐type chromosomes. This chromosomal constitution likely explains why recessive mutants of S. pastorianus have not previously been reported. Here we describe the construction of a ura3 deletion strain derived from the lager strain Weihenstephan34/70 by targeted transformation and subsequent loss of heterozygosity (LOH). Initially, deletion constructs of the Sc and Sb types of URA3 were constructed in laboratory yeast strains in which a TDH3p‐hygro allele conferring hygromycin B resistance replaced ScURA3 and a KanMX cassette conferring G‐418 resistance replaced SbURA3. The lager strain was then transformed with these constructs to yield a heterozygous URA3 disruptant (ScURA3+/Scura3Δ::TDH3p‐hygro, SbURA3+/Sbura3Δ::KanMX), which was plated on 5‐fluoroorotic acid (5‐FOA) plates to generate the desired Ura homozygous disruptant (Scura3Δ::TDH3p‐hygro/Scura3Δ::TDH3p‐hygro Sbura3Δ::KanMX/Sbura3Δ::KanMX) through LOH. This ura3 deletion strain was then used to construct a bottom‐fermenting yeast transformant overexpressing ATF1 that encodes an enzyme that produces acetate esters. The ATF1‐overexpressing transformant produced significantly more acetate esters than the parent strain. The constructed ura3? lager strain will be a useful host for constructing strains of relevance to brewing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号