首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antioxidant and Antithrombotic Activities of Rapeseed Peptides   总被引:2,自引:0,他引:2  
The antioxidant and antithrombotic activities of crude rapeseed peptides (CRPs) and peptide fractions (RP25 and RP55) prepared from aqueous enzymatic extraction (AEE) of rapeseed were determined. The reducing power of RP55 and CRPs was higher than that of RP25 at the same concentrations. Rapeseed peptides exhibited marked antioxidant activities. The median effective dose (ED50) values of CRPs, RP25 and RP55 for α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging were 72, 499 and 41 μg/mL, respectively. The ED50 values for RP25 and RP55 for hydroxyl radicals scavenging were 2.53 and 6.79 mg/mL, respectively while the ED50 values of RP55 and CRPs for inhibition of lipid peroxidation in a liposome model system were 4.06 and 4.69 mg/mL, respectively. The inhibitory effect on lipid oxidation of RP55 was similar to that of ascorbic acid at a concentration of 5.0 mg/mL. A good positive correlation existed between the peptide concentration and antioxidant activity. RP55 generally showed more potent antioxidant activities except for hydroxyl radicals scavenging ability than RP25 and CRPs at the same concentrations, which was thought to relate to the significantly higher contents of hydrophobic amino acid, tannin, and the brown color substances in RP55. Rapeseed peptides possessed marked inhibitory activities on the thrombin-catalyzed coagulation of fibrinogen, however, their inhibitory effects were not comparable to that of heparin.  相似文献   

2.
Antioxidant activity of Magnolol, honokiol, and related phenolic compounds   总被引:14,自引:0,他引:14  
The antioxidant activity of 10 Japanese and Chinese crude drugs (Kampo drugs) was determined in vitro. Extract of Magnolia cortex, which had the highest antioxidant activity, contained phenolic compounds magnolol and honokiol. However, inhibitory effects of these compounds on lipid oxidation were weaker than that of α-tocopherol as measured by thiobarbituric acid assay. The structure-activity relationship of phenolic compounds showed that antioxidant activities were in the order 4-allyl-2,6-dimethoxyphenol ≥ p,p′-biphenol > eugenol > 2-allyl-6-methylphenol > honokiol > magnolol > caffeic acid > p-ethylphenol > guaiacol. As expected, these results showed that an electron donor and/or bulky groups at the ortho- or para-position of the phenol were required for inhibition of lipid oxidation. Electron spin resonance spin trapping experiments showed that phenol compounds with an allyl substituent on their aromatic rings directly scavenged superoxide (O 2 ), and that only eugenol trapped hydroxyl radicals. These findings suggest that phenolic compounds that contain allyl groups may be effective antioxidants because of the scavenging ability of O 2 or hydroxyl radical, whereas other phenols, without an allyl moiety such as α-tocopherol, may play a role in the termination of free radical chain reactions.  相似文献   

3.
Garlic polysaccharide (PS) was extracted from garlic by hot-water extraction. Acetylated garlic polysaccharide (AcPS) and garlic polysaccharide-zinc complex (ZnPS) were synthesized. The results of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy analysis showed that the modifications were successful. The antioxidant activities of PS, AcPS, and ZnPS were further investigated in vitro, including scavenging superoxide anion and hydroxyl radicals, antilipid peroxidation capacity, and reducing power. The results showed that the scavenging abilities of AcPS and ZnPS on hydroxyl radical (The IC50 of PS, AcPS, and ZnPS were 2.86, 1.62 and, 1.49 mg/ml, respectively,) and superoxide anion radical (The scavenging rate of PS, AcPS, and ZnPS were 1.5% and 1.8%, and 2.3%, respectively, when concentration was at 1.0 mg/ml.) were stronger than that of PS, and the inhibitory effect of AcPS on lipid peroxidation was significantly stronger than that of PS (The IC50 of PS and AcPS were 1.05 and 0.53 mg/ml, respectively.). It indicated that the acetylation was a favorable way to enhance the antioxidant activity of garlic PS; ZnPS complex could be applied as potential candidate for antioxidant and Zn supplement.  相似文献   

4.
Cholesterol was used as an in situ probe for studying mechanisms of lipid peroxidation in isolated erythrocyte membranes subjected to different prooxidant conditions. The membranes were labeled with [14C]cholesterol by exchange with prelabeled unilamellar liposomes and photosensitized with hematoporphyrin derivative. Irradiation with a dose of blue light resulted in thiobarbituric acid-detectable lipid peroxidation that was increased markedly by subsequent dark incubation with 0.5–1.0 mM ascorbate (AH). Ascorbate-stimulated lipid peroxidation was inhibited by EDTA, desferrioxamine (DOX) and butylated hydroxytoluene (BHT), suggesting that the process is free radical in nature and catalyzed by membrane-bound iron. Thin layer chromatography and radiometric scanning of extracted lipids from photooxidized membranes revealed that the major oxidation product of cholesterol was the 5α-hydroperoxide (5α-OOH), a singlet oxygen adduct. Post-irradiation treatment with AH/Fe(III) resulted in an almost-total disappearance of 5α-OOH and the preponderance of free radical oxidation products, e.g. 7-ketocholesterol, the epimeric 7α-/7β-hydroperoxides (7α-/7β-OOH) and their respective alcohols (7α-/7β-OH). EDTA, DOX and BHT inhibited the formation of these products, while catalase and superoxide dismutase had no effect. These results are consistent with a mechanism involving 1-electron reduction of photogenerated hydroperoxides to oxyl radical, which trigger bursts of free radical lipid peroxidation. Though generated in this system, partially reduced oxygen species, viz. superoxide, hydrogen peroxide and hydroxyl radical, appear to be relatively unimportant in the autoxidation process. Presented at the symposium “Free Radicals Antioxidants, Skin Cancer and Related Diseases” at the 78th AOCS Annual Meeting in New Orleans, LA, May 1987.  相似文献   

5.
The effects of singlet oxygen- and oxygen radical-induced lipid peroxidation on cell membrane integrity were compared, using the human erythrocyte ghost as a model system. Resealed ghosts underwent lipid peroxidation and lysis (release of trapped glucose-6-P) when irradiated in the presence of uroporphyrin (UP) or when incubated with xanthine (X), xanthine oxidase (XO) and iron. The UP-sensitized process was inhibited by azide but not by phenolic antioxidants, consistent with singlet oxygen (nonradical) involvement. This was confirmed by showing that the predominant photoproduct of membrane cholesterol was the 5α-hydroperoxide. Total hydroperoxide (LOOH) content in UP-photooxidized ghosts increased linearly during the prelytic lag and throughout the period of rapid lysis. Unlike the photoreaction, X/XO/iron-dependent peroxidation and lysis was inhibited by catalase, superoxide dismutase and phenolic antioxidants, indicating O2 /H2O2 intermediacy and a free radical mechanism. Correspondingly, only radical reactions products of cholesterol were formed, notably the 7α-, 7β-hydroperoxide pair. Membranes lysis had a distinct lag as in photooxidation; however, the LOOH profile was more complex, with an initial lag followed by a sharp increase and then slow decline. X/XO/iron-induced lysis commenced when LOOH levels were 2–3 times higher than in photosensitized lysis, suggesting that the pathways of membrane lesion formation are different in the two systems. In low concentrations, ascorbate exacerbated the damaging effects of photoperoxidation, switching the reaction from primarily singled oxygen- to oxygen radical-dependence, as indicated by cholesterol product analysis.  相似文献   

6.
The antioxidant action on lipid peroxidation of the synthesized selenium compounds 1-(11-selenadodecyl)-glycerol (SeG) and 1-(11-selenadodecyl)-3-Trolox-glycerol (SeIrG, where Trolox=6-hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid) was investigated. We compared the reactivity of the selenium compounds toward peroxyl radicals and their inhibitory effect on lipid peroxidation, induced by several kinds of initiating species such as azo compounds, metal ions, and superoxide/nitric oxide in solution, micelles, membranes, and rat plasma. SeTrG, but not SeG, scavenged peroxyl radicals. SeG reduced methyl linoleate hydroperoxides in organic solution and in methyl linoleate micelles oxidized by ferrous ion (Fe2+)/ascorbic acid. In rat plasma SeG and SeTrG decreased the formation of lipid hydroperoxides generated by hydrophilic azo compounds. SeG and SeTrG spared α-tocopherol (α-TOH) consumption in multilamellar vesicle membranes oxidized by hydrophilic or lipophilic initiators, and only SeTrG spared α-TOH in superoxide/nitric oxide oxidized membranes. In rat plasma oxidized by radical initiators (either hydrophilic or lipophilic) or superoxide/nitric oxide, SeTrG suppressed α-TOH consumption, but SeG had no effect. The two selenium-containing compounds showed inhibitory effects on lipid peroxidation that depended on their structure, the medium where they acted, and the oxidant used.  相似文献   

7.
Cu++ was uniquely capable of catalyzing the peroxidation of rat erythrocyte membrane lipid in the presence of 10 mM H2O2, whereas several other transition metal ions were without significant effect. In contrast, peroxidation of soybean phospholipid liposomes could be catalyzed with decreasing efficiency by Co++, Cu++, Pb++, or Cr+++ also in the presence of H2O2. The effect of imidazole on Cu++-catalyzed lipid peroxidation was stimulatory in liposomes and inhibitory in membrane preparations, whereas EDTA, histidine, citrate and alanine inhibited peroxidation in both systems. EDTA could stop the peroxidation after initiation, but catalase could not, indicating that Cu++ alone was necessary for the propagation of the chain reaction. Competitive inhibition studies with various scavengers of hydroxyl radicals or singlet oxygen and the absence of significant reaction enhancement by D2O indicated that neither of these reactive oxygen species was a major mediator in the Cu++-H2O2 oxidative system. A copper-oxygen complex may be directly involved in the initiation of peroxidation. Normal erythrocyte membranes and phospholipid liposomes also differ in their sensitivities toward external oxidative stress. In the absence of H2O2, Cu++ (0.2 mM) was capable of catalyzing lipid peroxidation in liposomes, aged erythrocyte membranes and membranes from vitamin-E-deficient rats; however, freshly prepared membranes from control rats and liposomes containing α-tocopherol required H2O2 greater than 2 mM for the catalytic effect of Cu++ to be observed.  相似文献   

8.
Peroxidation of linoleic acid (LA) was catalyzed by Fenton reagent (H2O2, and Fe2+) in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles, but not in negatively charged sodium dodecylsulfate (SDS) micelles. However, more hydroxyl radicals formedvia the Fenton reaction were trapped byN-t-butyl-α-phenylnitrone (PBN) in SDS micelles than in TTAB micelles. Generation of linoleic acid alkoxy (LO) radicals by Fe2+ via reductive cleavage of linoleic acid hydroperoxide (LOOH) resulted in peroxidation of LA and formation of PBN-LO· adducts in SDS micelles, but not in TTAB micelles. This LOOH dependent lipid peroxidation could be catalyzed in TTAB micelles in the presence of a negatively charged iron chelator, nitrilotriacetic acid (NTA). LO radicals formed by the LOOH dependent Fenton reaction were also trapped by PBN at the surface of TTAB micelles in the presence of NTA, but not in its absence. The consumption of a spin probe, 16-(N-oxyl-4,4′-dimethyloxazolidin-2-yl)stearic acid (16-NS) during the LOOH dependent Fenton reaction in the presence of NTA was higher in TTAB micelles of LA than in those of lauric acid (LauA), although the rates and amounts of LO radicals formed in the two types of fatty acid micelles were similar. The rates of 5-NS consumption in LA and LauA micelles were almost the same, and were lower than the rate of 16-NS in LA micelles. NTA-Fe2+ initiated peroxidation of LA in TTAB micelles without a lag time in the presence of LOOH, but after a lag period, peroxidation occurred without LOOH. α-Tocopherol inhibited peroxidation of LA catalyzed by Fenton reagent by scavenging OH radicals in TTAB micelles. In contrast, α-tocopherol enhanced free Fe2+ induced LOOH dependent lipid peroxidation through the regeneration of Fe2+ in SDS micelles. However, it inhibited NTA-Fe2+ induced LOOH dependent lipid peroxidation in TTAB micelles. The rate and amount of α-tocopherol oxidized by the Fe2+ induced, H2O2 dependent Fenton reaction were almost the same in TTAB micelles of LA and LauA. The oxidation of α-tocopherol by the NTA-Fe2+ induced, LOOH dependent Fenton reaction was greater and faster in LA micelles than in LauA micelles, although the rates of LO radical production in the two types of micelles were the same. During NTA-Fe2+ induced, LOOH dependent lipid peroxidation, α-tocopherol inhibited more effectively the consumption of 16-NS than 5-NS. The results are discussed in relation to the location of iron, the unsaturated bonding region of LA, the OOH group of LOOH, the radical trapping site of PBN, the spin sites of 5-NS and 16-NS, and the phenolic hydroxyl group of α-tocopherol in micelles with different charges. Based on a paper presented at the Symposium on Metals and Lipid Oxidation, held at the AOCS Annual Meeting in Baltimore, MD, April 1990.  相似文献   

9.
Menhaden fish oil (FO) containing n−3 fatty acids dramatically extends the life span and delays the onset and progression of autoimmune disease in (NZB×NZW)F1 (B/W) female mice as compared to those fed corn oil (CO) rich in n−6 lipids. As an inefficient antioxidant defense system has been linked to autoimmune diseases, the present study was undertaken to determine whether the protective action of n−3 lipids is mediated through their antioxidant defense system. Weanling B/W mice were fed a nutritionally adequate, semipurified diet containing CO or krill oil (KO) or FO at 10% level (w/w)ad libitum until the mice were 6.5 months old. All diets contained the same level of vitamin E (21.5 mg/100 g diet). We compared the effects of feeding n−6 and n−3 lipids on survival, kidney disease, hepatic microsomal lipid composition, peroxidation, and on the activity and mRNA expression of the antioxidant enzymes catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in 6.5-month-old B/W mice. The results showed that when compared to livers from CO-fed mice, livers from KO- and FO-fed mice showed: (i) significantly higher (P<0.001) activities and expression of CAT, GSH-Px and SOD; (ii) significantly lower (P<0.001) arachidonic acid (20∶4n−6) and linoleic acid (18∶2n−6) and higher (P<0.001) eicosapentaenoic acid (20∶5n−3) and docosahexaenoic acid (22∶6n−3) levels in hepatic microsomes; and (iii) significantly lower (P<0.001) estimated peroxidation indices and thiobarbituric acid reactive substances generation. The data indicate that one of the mechanisms through which the n−3 lipids delay the onset of autoimmune diseases in B/W mice may be through maintenance of higher activities and expression of hepatic antioxidant enzymes.  相似文献   

10.
Honglian Shi  Etsuo Niki 《Lipids》1998,33(4):365-370
Owing to increasing evidence showing the importance of lipid peroxidation in oxidative stress in vivo, the role and evaluation of antioxidants have received much attention. Ginkgo biloba extract (GBE), well-known as an efficient drug against diseases induced by free radicals, has been suggested to exert its effect by antioxidant action. A method was established to determine the activity of GBE as a hydrogen donor by stoichiometric and kinetic studies, and GBE was compared with several other antioxidants such as α-tocopherol, propyl gallate, and two kinds of flavonoids which are found in GBE, quercetin, and kaempferol. It was found that there were 6.62×1019 active hydrogens in 1g of GBE. Stoichiometric studies showed that one molecule of α-tocopherol reacted with one molecule of galvinoxyl radical. For quercetin, kaempferol and propyl gallate, the experimental stoichiometric numbers were 4.0, 1.9, and 3.1, respectively. The rates of reaction of antioxidants with galvinoxyl in ethanol were determined spectrophotometrically, using a stopped-flow technique. The second-order rate constant, k 2, obtained at 25°C was 0.13 (g/l)−1s−1 for GBE and 5.9×103, 2.1×103, 1.2×104, and 2.4×103 M−1s−1 for quercetin, kaempferol, propyl gallate, and α-tocopherol, respectively. The second-order rate constant, k 2′, on the molar basis of active hydroxyl groups in the tested substances obtained at 25°C decreased in the order of propyl gallate > α-tocopherol> quercetin>GBF∼kaempferol. This is the first study on GBE as an antioxidant which reports both stoichiometric and kinetic results.  相似文献   

11.
κ‐Carrageenan was degraded by an oxidative method involving hydrogen peroxide (H2O2). The molecular weight was measured by gel permeation chromatography. The effects of the concentration of H2O2 and initial κ‐carrageenan, pH value, and degradation time on the molecular weights of the degraded products were studied. The structural change of the degraded κ‐carrageenans was characterized by Fourier transform infrared spectroscopy and determination of the sulfate content. The antioxidant activity of the degraded κ‐carrageenans was evaluated as scavengers of superoxide anions and hydroxyl radicals by application of flow injection chemiluminescence technology. The values of the 50% inhibition concentration (IC50) against the superoxide anion of degraded κ‐carrageenans labeled A, B, C, and D (with weight‐average molecular weights of 3250, 5820, 15,080, and 209,000, respectively) were 2.65, 3.22, 6.66, and 8.13 mg/mL, respectively. As for hydroxyl radical scavenging, the IC50 values of κ‐carrageenans A, B, C, and D were 0.014, 0.049, 0.062, and 0.110 mg/mL, respectively. The results indicated that the κ‐carrageenans with lower molecular weights had better antioxidant activity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
近年来,国内外学者在对红树林植物抗氧化活性成分方面的研究有了很大进展,其中含多酚类化合物的糖苷、单宁是抗氧化活性的主要成分;很多有效成分效果好于标准对照物.本文以清除DPPH自由基、清除羟基自由基、清除亚硝基阴离子、清除超氧阴离子自由基、脂质过氧化抑制、清除过氧化氢、FRAP法、还原能力测定、ABTS法对近年来红树林抗...  相似文献   

13.
The reaction of N-chloro-4-hydroxy-2,2,6,6-tetramethylpiperidine (TMP-Cl) with sodium perborate (PB) was investigated with special reference to the generation of singlet oxygen and the possible application to a new oxidative bleaching process. Generation of the singlet oxygen (1O2), the hydroxyl radical (HO·) and superoxide anion radical (O2·) in the PB/TMP-Cl mixed solution was confirmed by the trapping reagent method. From the results of another experiment, in which the bleaching abilities of each active oxygen species were confirmed, the main active oxygen species contributing to the bleaching of purpurogallin, the skeleton of black tea pigment, in the PB/TMP-Cl system was concluded to be1O2.  相似文献   

14.
The non-protein amino acid, L-3,4-dihydroxyphenylalanine (L-DOPA), is the main allelochemical released from the roots of velvetbean and affects seed germination and root growth of several plant species. In the work presented here, we evaluated, in soybean roots, the effects of L-DOPA on the following: polyphenol oxidase (PPO), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities; superoxide anion ( \textO2·- ) \left( {{\text{O}}_2^{{\bullet - }}} \right) , hydrogen peroxide (H2O2), and melanin contents; and lipid peroxidation. To this end, 3-day-old seedlings were cultivated in half-strength Hoagland’s solution (pH 6.0), with or without 0.1 to 1.0 mM L-DOPA in a growth chamber (at 25°C, with a light/dark photoperiod of 12/12 hr and a photon flux density of 280 μmol m−2 s−1) for 24 hr. The results showed that L-DOPA increased the PPO activity and, further, the melanin content. The activities of SOD and POD increased, but CAT activity decreased after the chemical exposure. The contents of reactive oxygen species (ROS), such as \textO2·- {\text{O}}_2^{{\bullet - }} and H2O2, and the levels of lipid peroxidation significantly decreased under all concentrations of L-DOPA tested. These results suggest that L-DOPA was absorbed by the soybean roots and metabolized to melanin. It was concluded that the reduction in the \textO2·- {\text{O}}_2^{{\bullet - }} and H2O2 contents and lipid peroxidation in soybean roots was due to the enhanced SOD and POD activities and thus a possible antioxidant role of L-DOPA.  相似文献   

15.
Dipyridamole [2,6-bis-diethanolamino-4,8-dipiperidinopyrimido-(5,4-d) pyrimidine], a well known platelet aggregation inhibitor, shows powerful hydroxyl radical scavenging activity by inhibiting OH-dependent salicylate and deoxyribose degradation. Steady-state competition kinetics experiments with deoxyribose were carried out to evaluate the second-order rateconstant for the reaction between hydroxyl radical and dipyridamole. OH· radicals were generated either by a Fenton-type reaction or by X-ray irradiation of water solutions. A second-order rate constant k(Dipyridamole+OH·) of 1.72±0.11×1010M−1 s−1 and of 1.54±0.15×1010 M−1 s−1 was measured by Fenton chemistry and by radiation chemistry, respectively. Mannitol was used as an internal standard for hydroxyl radicals in steady-state competition experiments with deoxyribose. A rate constant k(Mannitol+OH·) of 1.58±0.13×109 M−1 s−1 and 1.88±0.14×109 M−1 s−1 was measured in the Fenton model and in the water radiolysis system, respectively. Both these rate constants are in good agreement with the published data obtained by the “deoxyribose assay” and by pulse radiolysis.  相似文献   

16.
The antioxidant effects of natural estrogens (estrone E1; 17β-estradiol), synthetic estrogens (17α-ethynylestradiol, EE2; mestranol, MES; diethylstilbestrol, DES) and catechle-strogens (2-hydroxyestradiol; 4-hydroxyestradiol 4-OHE2) on lipid peroxidation induced by different means in rat liver microsomes were investigated. The extent of lipid peroxidation was determined by measuring thiobarbituric acid reactive substances. Prooxidants included Fe3+/ADP/reduced NADPH, Fe2+/ascorbate,tert-butyl hydroperoxide (t-BOOH) and 2,2′-azobis (2-amidinopropane) (AAPH). Estrogens and catecholestrogens decreased lipid peroxidation in all four systems tested. In the iron/ascorbate model it was shown that (i)-OHE2 and DES had analogous patterns of inhibition, irrespective of the presence of NADPH or the functional integrity of the microsómes, and (ii) the antioxidant activities of E1, EE2 and MES were dependent on the assay conditions with the activity being markedley higher when estrogen metabolism was favored. When peroxidation was initiated by the peroxyl radical generator AAPH, the inhibitory effects observed were least pronounced. Our data also showed that, in each of the systems, all inhibitors displayed the same order of inhibitory potency with DES and catecholestrogens being the most potent antioxidants under all experimental conditions used. The present results confirm earlier findings and point toward a link between estrogen metabolism and estrogen antioxidant activity. The data also indicate that estrogens and catecholestrogens interact with the peroxidative process at different levels with their interactions with iron or the metal-derived species being the most important modes of inhibition.  相似文献   

17.
Proliferation in a lekemic T cell line (Jurkat) was suppressed in a dose dependent manner by n−6 and n−3 polyunsaturated fatty acids (PUFA) added to the culture medium. At high concentrations, PUFA have a cytotoxic effect on Jurkat cells. The inhibitory effect of the PUFA was not due to production of prostaglandins, and lipid peroxidation was only partly responsible. In addition to production of peroxides and aldehydes, lipid peroxidation also reduced the plasmalogen levels in these cells. The antioxidant α-tocopherol blocked lipid peroxidation and restored the plasmalogen levels to normal. α-Tocopherol did not totally restore cell proliferation although the MDA-like products in these cultures (supplemented with PUFA) were reduced to control level. Cultures supplemented with n−6 PUFA seemed to respond better to α-tocopherol than n−3 PUFA. This suggests that n−6 PUFA may exert their growth inhibitory effect predominantly via lipid peroxidation while different mechanisms might be operating for the n−3 PUFA.  相似文献   

18.
Araya J  Rodrigo R  Orellana M  García V 《Lipids》2003,38(3):275-279
We studied the effects of red wine consumption on the FA composition of rat kidney. Four groups of adult male rats were fed a balanced diet for 10 wk. The drinking fluid was water (control), red wine, alcohol-free red wine, or ethanol (12.5%, vol/vol). FA composition, lipid peroxidation, and cytochrome P450 content were determined in the kidney. The antioxidant capacity of plasma was also measured. Ethanol decreased the content of long-chain PUFA, whereas red wine maintained the levels of arachidonic (20∶4n−6) and eicosapentaenoic (20∶5n−3) acids and alcohol-free red wine significantly increased the levels of 20∶4n−6. Lipid peroxidation in the red wine and alcohol-free red wine groups was significantly lower than that of both the control and ethanol groups. The diminished renal lipid peroxidation was associated with an increased antioxidant capacity of plasma. Renal cytochrome P450 was elevated by 50% in the ethanol group and diminished by 20% in the alcohol-free red wine group. These data suggest that moderate red wine consumption could contribute to the preservation of the contents of n−3 and n−6 PUFA, particularly 20∶4n−6, in rat kidney. Although ethanol increased the content of cytochrome P450 in the kidney, this effect was eliminated by the nonalcoholic components of red wine.  相似文献   

19.
The 1O2 quenching rate constants (k Q ) of α-tocopherol (α-Toc) and carotenoids such as β-carotene, astaxanthin, canthaxanthin, and lycopene in liposomes were determined in light of the localization of their active sites in membranes and the micropolarity of the membrane regions, and compared with those in ethanol solution. The activities of α-Toc and carotenoids in inhibiting 1O2-dependent lipid peroxidation (reciprocal of the concentration required for 50% inhibition of lipid peroxidation: [IC50]−1) were also measured in liposomes and ethanol solution and compared with their k Q values. The k Q and [IC50]−1 values were also compared in two photosensitizing systems containing Rose bengal (RB) and pyrenedodecanoic acid (PDA), respectively, which generate 1O2 at different sites in membranes. The k Q values of α-Toc were 2.9×108M−1s−1 in ethanol solution and 1.4×107 M−1s−1 (RB system) or 2.5×106 M−1s−1 (PDA system) in liposomes. The relative [IC50]−1 value of α-Toc in liposomes was also five times higher in the RB system than in the PDA-system. In consideration of the local concentration of the OH-group of α-Toc in membranes, the k Q value of α-Toc in liposomes was recalculated as 3.3×106 M−1s−1 in both the RB and PDA systems. The k Q values of all the carotenoids tested in two photosensitizing systems were almost the same. The k Q value of α-Toc in liposomes was 88 times less than in ethanol solution, but those of carotenoids in liposomes were 600–1200 times less than those in ethanol solution. The [IC50]−1 value of α-Toc in liposomes was 19 times less than that in ethanol solution, whereas those of carotenoids in liposomes were 60–170 times less those in ethanol solution. There were no great differences (less than twice) in the k q and [IC50]−1 values of any carotenoids. The k Q values of all carotenoids were 40–80 times higher than that of α-Toc in ethanol solution but only six times higher that of α-Toc in liposomes. The [IC50]−1 values of carotenoid were also higher than that of α-Toc in ethanol solution than in liposomes, and these correlated well with the k Q values.  相似文献   

20.
Beta-adrenergic receptor blocking drugs include a structurally related class of drugs that are employed clinically to treat a variety of cardiovascular disorders. Since these drugs exert additional nonspecific effects including membrane stabilization, representative samples including atenolol, dilevolol, labetolol, metoprolol and propranolol were studied to determine their influence on lipid peroxidation. Homogenates or liposomes of adult rat hearts were incubated in the presence of various concentrations of propranolol or equivalent concentrations of dilevolol, labetolol, metoprolol or atenolol. Lipid peroxidation was stimulated with 50 μM FeSO4, 5 μMt-butyl hydroperoxide (homogenates) or 0.2 mM citrate FeSO4 (liposomes) plus O2. Lipid peroxidation, as assessed by both the thiobarbituric acid reaction and chemiluminescence, was reduced in a dose-dependent manner as the propranolol concentration was increased from 1 to 10 mM. The five beta-adrenergic receptor blocking drugs reduced lipid peroxidation both in crude homogenates and in liposomes; their effectiveness was related to their lipophilicity. Dilevolol, propranolol, labetolol and metoprolol at a concentration of 20 mM reduced lipid peroxidation by 45%, 37%, 35% and 28%, respectively. The hydrophilic blocker atenolol was ineffective in reducing lipid peroxidation event at elevated concentrations. Lipophilic beta-blocking drugs apparently are capable of exerting an antioxidant effect in protecting membrane lipids against peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号