首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
The subjective visual horizontal (SVH) was measured by means of a small rotatable luminous line in darkness in the upright body position and at 10, 20 and 30 degrees of body tilt to the right and left prior to, and during a follow-up period after, stapedotomy in 12 patients with otosclerosis. In the acute stage after surgery, SVH in the upright body position was significantly tilted away from the operated side. In addition, the perception of roll tilt towards the operated side (Kop) was significantly increased after stapedotomy, while the perception of roll tilt towards the healthy side (Khe) showed a slight but not significant reduction. After exclusion of two outliers, a statistically significant correlation was found between changes in Kop and in Khe. The slope of the regression line was 1.8:1, probably corresponding to a preference of the utricle for ipsilateral as opposed to contralateral head tilt. In four patients there was a weak ( < 1 degrees/s) spontaneous nystagmus, not systematically related to the side of surgery, while in most cases there were no nystagmus or subjective vertigo symptoms. These specific changes in the subjective horizontal show that the otolithic effects on perception can be dissociated from canal effects. Further, the results are opposite to those for patients with unilateral loss of vestibular function. The tilt of SVH after stapedotomy indicates an increase in resting activity of utricular afferents. In addition, based on recent theories on otolith function, we suggest that an increased activity in saccular afferents is of major importance for the changes in roll-tilt perception because of its interaction with the utricle on the central nervous level.  相似文献   

2.
1. In order to more accurately identify the nature of the vestibular input to central neurons, the response properties of single semicircular canal and otolith units in the frog VIIth nerve were studied in curarized preparations. 2. An equation describing the response plane was calculated for each canal on the basis of null point measurements. These results show that the ipsilateral canal planes are orthogonal within 2-5 degrees, and the pairs of right-left synergists are essentially coplanar. A head position of 10-20 degrees maxilla nose up produces optimal horizontal canal and minimal vertical canal activation with horizontal rotation. 3. The frequency response of the horizontal canal was examined in the range 0.025-0.5 Hz. Comparatively shorter phase-lags and a 10 fold greater acceleration gain in this frequency range distinguish the frog from the mammalian species studied. 4. Otolithic responses were tonic, phasic-tonic, and phasic in nature. The preponderance of the latter two groups is stressed (94%). Tonic responses were proportional to the gravitational vector change. Phasic responses were proportional to velocity during transitions in head position and phase-led displacement (30-80%) with sinusoidal acceleration in roll and pitch. 5. Efferent vestibular neurons respond to rotation in the horizontal (usually Type III) as well as vertical planes. Responses in the vertical planes result from canal and/or otolithic input to these neurons indicating that the vestibular efferent system receives extensive multi-labyrinthine convergence.  相似文献   

3.
M Fetter 《Canadian Metallurgical Quarterly》1996,40(5-6):315-8; discussion 318-9
The otolith-semicircular canal interaction during postrotatory nystagmus was studied in six normal human subjects by applying fast, short-lasting, passive head and body tilts (90 degrees in the roll or pitch plane) 2 s after sudden stop from a constant velocity rotation (100 degrees/s) about the earth-vertical axis in yaw. Eye movements were measured with 3-D magnetic search coils. Following the head tilt, activity in the semicircular canal primary afferents continues to reflect the postrotatory angular velocity vector in head-centered coordinates, whereas otolith primary afferents signal a different orientation of the head relative to gravity. Pitch (roll) tilts away from upright during postrotatory nystagmus after yaw rotation elicited a transient vertical (torsional) VOR. Despite the change in head orientation relative to gravity, postrotatory eye velocity decayed closely along the axis of semicircular canal stimulation (horizontal in head coordinates). These results suggest that postrotary nystagmus is largely organized in head-centered rather than gravity-centered coordinates in humans as suggested by the Purkinje-sensation.  相似文献   

4.
We recently observed a female patient who was suffering from acute right peripheral cochleovestibular loss associated with a marked vertical diplopia. Otoneurological examination showed profound deafness, and absence of nystagmic response to caloric and pendular rotatory test in the right ear. Neuroophthalmological examination showed skew deviation with right hypotropia, excyclotorsion, and tilt of the static visual vertical directed to the right side. Immunological and serological examinations were normal. Neurological examination and extensive neuroradiological investigations failed to demonstrate any central nervous system involvement. In this patient, skew deviation and tilt of the static visual vertical were interpreted as signs of an acute unilateral otolithic dysfunction, due to a sudden idiopathic peripheral vestibular loss.  相似文献   

5.
The mesencephalic interstitial nucleus of Cajal (iC) is considered the neural integrator for vertical and torsional eye movements and has also been proposed to be involved in saccade generation. The aim of this study was to elucidate the function of iC in neural integration of different types of eye movements and to distinguish eye movement deficits due to iC impairment from that of the immediately adjacent rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF). We addressed the following questions: (1) According to the neural integrator hypothesis, all eye movements including the saccadic system and the vestibulo-ocular reflex (VOR) share a common neural integrator. Do iC lesions impair gaze-holding function for vertical and torsional eye positions and the torsional and vertical VOR gain to a similar degree? (2) What are the dynamic properties of vertical and torsional eye movements deficits after iC lesions, e.g., the specificity of torsional and vertical nystagmus? (3) Is iC involved in saccade generation? We performed 13 uni- and three bilateral iC inactivations by muscimol microinjections in four alert monkeys. Three-dimensional eye movements were studied under head-stationary conditions during vertical and torsional VOR. Under static conditions, unilateral iC injections evoked a shift of Listing's plane to the contralesional side (up to 20 degrees), which increased (ipsilesional ear down) or decreased (ipsilesional ear up) by additional static vestibular stimulation in the roll plane, i.e., ocular counterroll was preserved. The monkeys showed a spontaneous torsional nystagmus with a profound downbeat component. The fast phases of torsional nystagmus always beat toward the lesion side (ipsilesional). Pronounced gaze-holding deficit for torsional and vertical eye positions (neural integrator failure) was reflected by the reduction of time constants of the exponential decay of the slow phase to 330-370 ms. Whereas the vertical oculomotor range was profoundly decreased (up to 50%) and vertical saccades were reduced in amplitude, saccade velocity remained normal and horizontal eye movements were not affected. Bilateral iC injections reduced the shift of Listing's plane caused by unilateral injections, i.e., back toward the plane of zero torsion. Torsional nystagmus reversed its direction and ceased, whereas vertical nystagmus persisted. In contrast to unilateral injection, there was additional upbeating nystagmus. Time constants of the position integrator of the gaze-holding system did not differ between unilateral and bilateral injections. The range of stable vertical eye positions and saccade amplitude was smaller when compared with unilateral injections, but the main sequence remained normal. Dynamic vestibular stimulation after unilateral iC injections had virtually no effect on torsional and vertical VOR gain and phase at the same time when time constants already indicated severe integrator failure. Torsional VOR elicited a constant slow-phase velocity offset up to 30 degrees toward the contralesional side, i.e., in the opposite direction to spontaneous torsional nystagmus. Likewise, vertical VOR showed a velocity offset in an upward direction, i.e., opposite to the spontaneous downbeat nystagmus. Contralesional torsional and upward vertical quick phases were missing or severely reduced in amplitude but showed normal velocity. In contrast, bilateral iC injections reduced the gain of the torsional and vertical VOR by 50% and caused a phase lead of 10-20 degrees (eye compared with head velocity). We propose that the slow-phase velocity offset during torsional and vertical VOR reflects a vestibular imbalance. It therefore appears likely that the vertical and torsional nystagmus after iC lesions is not only caused by a neural integrator failure but also by a vestibular imbalance. Unilateral iC injections have clearly differential effects on the VOR and the gaze-holding function. (ABSTRACT TRUNCATED)  相似文献   

6.
181 vestibular nucleus neurons were examined for their responsiveness to rotation about the vertical axis and static tilts in roll and pitch planes in the rat. 68 of these units were sensitive to rotation and tilts (canal-otolith cells). In other words, 41.0% of the neurons responded to rotation (68/166). There was no significant difference in percentage of canal-otolith cells in type I and II neurons, which were 48.6% and 37.0% respectively. Vertical axis rotation when the head was tilted produced a simultaneous stimulation of the canal and otoliths. Using this stimulus method, the bias effect was observed in 72.5% of the canal-otolith cells (29/40). Furthermore, since vertical axis rotation with the head tilted elicited vertical canal responses, the rate of ampullary convergence was estimated by analysing response profiles obtained such rotations. The results obtained in the rat were compared with those in other species.  相似文献   

7.
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED)  相似文献   

8.
BACKGROUND: We report a sudden 90 degrees room tilt illusion (RTI) following vestibular stimulation in 3 patients with persistent skew deviation caused by a brain stem lesion. Room tilt illusion is a transient tilt perception of the visual surrounding, on its side or even upside down, that is often reported with brain stem lesions. Although its pathophysiologic cause is not well known, the RTI suggests an impairment of otolith pathways, as reported in skew deviation. METHODS: The 3 patients with brain stem lesions were reexamined as part of a follow-up of patients with signs of otolith dysfunction. A registration of vestibular function was performed with a rotatory chair, including earth-vertical axis rotation for canal stimulation and off-vertical axis rotation (OVAR) for otolith stimulation. Measurement of the subjective visual vertical (SVV) was also performed. RESULTS: The otolith-ocular reflex registered by OVAR was impaired in the 3 patients with skew deviation and the SVV in 2 patients. After each direction of OVAR stimulation, the 3 patients reported an RTI as the room was illuminated. CONCLUSIONS: The coexistence of otolith oculomotor (skew deviation and impaired otolith-ocular reflex) and perceptual (tilt of SVV and RTI) disorders suggests a common otolith dysfunction. However, an RTI occurred specifically after vestibular stimulation and when the room was illuminated. We thus suggest that RTI reflects a dynamic visuo-otolith mismatch.  相似文献   

9.
Apparent orientation of the body tilted laterally in the frontal plane was studied with the methods of absolute judgments in four experiments. In Experiment 1, 17 subjects, who maintained the normal adaptation of body to gravity, estimated their body tilts under the condition of seeing the gravitational vertical and under the condition of eliminating it. The results showed that (1) there was not a significant difference between the two conditions and (2) the small tilts of less than 45 degrees were exactly estimated, whereas the large tilts of 45 degrees-108 degrees were overestimated. In Experiment 2, 10 subjects estimated their body tilts under three velocities of a rotating chair on which each subject was placed. Although both body tilt and chair velocity were found to influence tilt estimation, the effect of body tilt was overwhelmingly greater than that of chair velocity. In Experiment 3, 11 subjects adapted their bodies to a 72 degrees left tilt for 10 min and then estimated various body tilts around the adapting tilt. The estimations obtained under the 72 degrees adaptation were lower than those obtained under the 0 degree adaptation, and this reduction was greater for the test tilt that was farther away from the adapting tilt. In Experiment 4, 11 subjects adjusted their own body tilts to designated angles. The results confirmed the outcomes of absolute estimation in Experiments 1-3. From these findings and past literature, the judgments of body tilt were considered to be subserved by a single sensory process that was based on the cutaneous and muscular proprioceptors, rather than the vestibular and joint proprioceptors.  相似文献   

10.
The fastigial nucleus (FN) receives vestibular information predominantly from Purkinje cells of the vermis. FN in the monkey can be divided in a rostral part, related to spinal mechanisms, and a caudal part with oculomotor functions. To understand the role of FN during movements in space, single-unit activity in alert monkeys was recorded during passive three-dimensional head movements from rostral FN. Seated monkeys were rotated sinusoidally around a horizontal earth-fixed axis (vertical stimulation) at different orientations 15 degrees apart (including roll, pitch, vertical canal plane and intermediate planes). In addition, sinusoidal rotations around an earth-vertical axis (yaw stimulus) included different roll and pitch positions (+/-10 degrees, +/-20 degrees). The latter positions were also used for static stimulation. One hundred fifty-eight neurons in two monkeys were modulated during the sinusoidal vertical search stimulation. The vast majority showed a uniform response pattern: a maximum at a specific head orientation (response vector orientation) and a null response 90 degrees apart. Detailed analysis was obtained from 111 neurons. On the basis of their phase relation during dynamic stimulation and their response to static tilt, these neurons were classified as vertical semicircular canal related (n = 79, 71.2%) or otolith related (n = 25; 22.5%). Only seven neurons did not follow the usual response pattern and were classified as complex neurons. For the vertical canal-related neurons (n = 79) all eight major response vector orientations (ipsilateral or contralateral anterior canal, posterior canal, roll, and nose-down and nose-up pitch) were found in Fn on one side. Neurons with ipsilateral orientations were more numerous and on average more sensitive than those with contralateral orientations. Twenty-eight percent of the vertical canal-related neurons also responded to horizontal canal stimulation. None of the vertical canal-related neurons responded to static tilt. Otolith-related neurons (n = 25) had a phase relation close to head position and were considerably less numerous than canal-related neurons. Except for pitch, all other response vector orientations were found. Seventy percent of these neurons responding during dynamic stimulation also responded during static tilt. The sensitivity during dynamic stimulation was always higher than during static stimulation. Sixty-one percent of the otolith-related neurons responded also to horizontal canal stimulation. These results show that in FN, robust vestibular signals are abundant. Canal-related responses are much more common than otolith-related responses. Although for many canal neurons the responses can be related to single canal planes, convergence between vertical canals but also with horizontal canals is common.  相似文献   

11.
Static vestibulo-ocular brain stem syndromes characterized by skew deviation, a vertical disconjugacy of the eyes, and ocular torsion are the result of a vestibular tone imbalance in the frontal (roll) plane. Similar physiological changes in static eye position, ocular counter-roll and conjugated deviations of vertical eye position, are caused by the influence of gravity mediated by the utricles. These observations prompted our approach with the model described here: based on the known deviations of static eye position, we devised a three-dimensional mathematical model of otolith-ocular function including detailed brain stem anatomy. This model is able to explain and predict the differential effects of unilateral and bilateral peripheral or central vestibular lesions on static eye position in roll, pitch, and yaw planes.  相似文献   

12.
A study of the clinical test of sensory interaction and balance   总被引:1,自引:0,他引:1  
H Cohen  CA Blatchly  LL Gombash 《Canadian Metallurgical Quarterly》1993,73(6):346-51; discussion 351-4
BACKGROUND AND PURPOSE: The ability to maintain an upright position during quiet standing is a useful motor skill. The Clinical Test of Sensory Interaction and Balance is an inexpensive, easily administered test that provides information about the ability to stand upright under several sensory conditions. SUBJECTS: Three groups of neurologically asymptomatic (AS) adults, divided by age into younger, middle-aged, and older groups, participated in the study. A fourth group comprised subjects diagnosed with vestibular disorders. METHODS: Timed performances under six different conditions were compared across groups. RESULTS: Subjects with vestibular disorders were significantly impaired on performance when compared with age-matched AS subjects. Older AS and vestibularly impaired subjects had greater variation in their scores than did younger AS subjects. CONCLUSION AND DISCUSSION: This test is a useful screening tool for examining static standing balance.  相似文献   

13.
OBJECTIVE AND BACKGROUND: Animal experiments have shown that central vestibular compensation of unilateral peripheral vestibular lesions can be improved by vestibular exercises. There are, however, no equivalent clinical studies on the efficacy of such specific physiotherapy on acute unilateral peripheral vestibular lesions in humans. DESIGN AND METHODS: To quantify the differential effects of specific vestibular exercises on central compensation in patients with an acute/subacute unilateral vestibular lesion (vestibular neuritis), we determined the time course of recovery of 1) the ocular torsion (OT) for the vestibulo-ocular system, 2) the subjective visual vertical (SVV) for perception, and 3) the total sway path (SP) values for postural control in 19 patients with and 20 patients without vestibular exercises. All patients had a persisting peripheral vestibular deficit for at least 30 days (statistical end point). RESULTS: Although normalization of OT and SVV was similar in the control and physiotherapy groups, the total SP values on day 30 after symptom onset differed significantly: 3.2 +/- 1.9 m/min in the physiotherapy group and 16.9 +/- 6.1 m/min in the control group (ANOVA, p < 0.001). CONCLUSIONS: This prospective clinical study suggests that specific vestibular exercises improve vestibulospinal compensation in patients with acute peripheral vestibular lesions.  相似文献   

14.
OBJECTIVES: The primary goal of this study was to evaluate alternative tympanometric parameters for distinguishing normal middle ears from ears with otosclerosis. A secondary goal was to provide guidelines and normative data for interpreting multifrequency tympanometry obtained using the Virtual 310 immittance system. DESIGN: Nine tympanometric measures were examined in 68 normal ears and 14 ears with surgically confirmed otosclerosis. No subjects in either group had a history of head trauma or otoscopic evidence of eardrum abnormalities. Two parameters, static admittance and tympanometric width, were derived from standard low-frequency tympanometry and two parameters, resonant frequency and frequency corresponding to admittance phase angle of 45 degrees (F45 degrees), were derived from multifrequency tympanometry. RESULTS: Differences between normal and otosclerotic ears were statistically significant only for resonant frequency and F45 degrees. Group differences in resonant frequency were larger when estimated using positive tail, rather than negative tail, compensation. Group differences in both resonant frequency and F45 degrees were larger when estimated from sweep frequency (SF), rather than sweep pressure, tympanograms. Test performance analysis and patterns of individual test performance point to two independent signs of otosclerosis in the patient group; 1) an increase in the stiffness of the middle ear, best indexed by F45 degrees derived from SF recordings, and 2) a change in the dynamic response of the tympanic membrane/middle ear system to changes in ear canal pressure, best indexed by tympanometric width. Most patients were correctly identified by only one of these two signs. Thus, optimal test performance was achieved by combining F45 degrees derived from SF recordings and tympanometric width. CONCLUSIONS: The findings confirm the advantage of multifrequency tympanometry over standard low-frequency tympanometry in differentiating otosclerotic and normal ears. Recommendations for interpreting resonant frequency and F45 degrees measures obtained using the Virtual Immittance system are also provided. In addition, the relationship among different tympanometric measures suggests a general strategy for combining tympanometric measures to improve the identification of otosclerosis.  相似文献   

15.
1. We studied the contribution of the individual semicircular canals to the generation of horizontal and torsional eye movements in cynomolgus monkeys. Eye movements were elicited by sinusoidal rotation about a vertical (gravitational) axis at 0.2 Hz with the animals tilted in various attitudes of static forward or backward pitch. The gains of the horizontal and torsional components of the vestibuloocular reflex (VOR) were measured for each tilt position. The gains as a function of tilt position were fit with sinusoidal functions, and spatial gains and phases were determined. After control responses were recorded, the semicircular canals were plugged, animals were allowed to adapt, and the test procedure was repeated. Animals were prepared with only the anterior and posterior canals intact [vertical canal (VC) animals], with only the lateral canals intact [lateral canal (LC) animal], and with only one anterior and the contralateral posterior canals intact [right anterior and left posterior canal (RALP) animals; left anterior and right posterior canal (LARP) animals]. 2. In normal animals, the gain of the horizontal (yaw axis) velocity of the compensatory eye movements decreased as they were pitched forward or backward, and a torsional velocity appeared, reversing phase at the peak of the horizontal gain. After the anterior and posterior canals were plugged (LC animal), the horizontal component was reduced when the animal was tilted backward; the gain was zero with about -60 degrees of backward tilt. The spatial phase of the torsional component had the same characteristics. This is consistent with the fact that both responses were produced by the lateral canals, which from our results are tilted between 28 and 39 degrees above the horizontal stereotaxic plane. 3. After both lateral canals were plugged (VC animals), horizontal velocity was reduced in the upright position but increased as the animals were pitched backward relative to the axis of rotation. Torsional velocities, which were zero in the upright position in the normal animal, were now 180 degrees out of phase with the horizontal velocity. The peak values of the horizontal and torsional components were significantly shifted from the normal data and were closely aligned with each other, reaching peak values at approximately -56 degrees pitched back (-53 degrees horizontal, -58 degrees torsional). The same was true for the LARP and RALP animals; the peak values were at -59 degrees pitched back (-55 degrees horizontal, -62 degrees torsional). Likewise, in the LC animal the peak yaw and roll gains occurred at about the same angle of forward tilt, 35 degrees (30 degrees horizontal, 39 degrees torsional). Thus, in each case, the canal plugging had transformed the VOR from a compensatory to a direction-fixed response with regard to the head. Therefore there was no adaptation of the response planes of the individual canals after plugging. 4. The data were compared with eye velocity predictions of a model based on the geometric organization of the canals and their relation to a head coordinate frame. The model used the normal to the canal planes to form a nonorthogonal coordinate basis for representing eye velocity. An analysis of variance was used to define the goodness of fit of model predictions to the data. Model predictions and experimental data agreed closely for both normal animals and for the animals with canal lesions. Moreover, if horizontal and roll components from the LC and VC animals were combined, the summation overlay the response of the normal monkeys and the predictions of the model. In addition, a combination of the RALP and LARP animals predicted the response of the lateral-canal-plugged (VC) animals. 5. When operated animals were tested in light, the gains, peak values, and spatial phases of horizontal and roll eye velocity returned to the preoperative values, regardless of the type of surgery performed. This indicates that vision compensated for the lack o  相似文献   

16.
The discharge properties of lateral and descending vestibular neurons responsive to constant velocity off-vertical axis rotations (OVAR) in the clockwise (CW) and counterclockwise (CCW) directions, were studied at the stationary and earth-horizontal position of decerebrate adult rats. From the coefficient of variation (CV), the spontaneous activities of OVAR-responsive neurons were classified into regular and irregular patterns. Of the neurons (n = 36) that showed symmetric and stable bidirectional response sensitivity (delta defined as CW gain over CCW gain) to OVAR (10 degrees tilt), some exhibited progressive phase shift with velocity (1.75-15 degrees/s) while others exhibited stable response phase. Most neurons of the former group (93% or 12/13) showed regular discharge pattern while only 22% (n = 5/23) of the latter group showed such a pattern. Though the phase-stable neurons showed a significantly higher average CV than the phase-shifted neurons, there was no significant difference between the mean spontaneous firing rates of these neurons. The neurons (n = 17) that showed asymmetric and variable delta to OVAR velocity can also be grouped-those that exhibited a greater gain with rotations directed towards the side of recording (I neurons) showed irregular discharge pattern while those that exhibited a greater gain with rotations directed towards the side contralateral to recording (C neurons) showed regular discharge pattern. The I and C neurons also exhibited significant difference in mean firing rates. The relationship between the response characteristics of the OVAR-responsive neurons and their spontaneous activity at the stationary and earth-horizontal position is discussed.  相似文献   

17.
Body tilt effects on the visual reproduction of orientations and the Class 2 oblique effect (E. A. Essock, 1980) were examined. Body tilts indicate whether the oblique effect (i.e., lower performance in oblique orientations than in vertical-horizontal orientations) is defined in an egocentric or a gravitational reference frame. Results showed that the oblique effect observed in upright posture disappeared in tilted conditions, mainly due to a decrease in the precision of the vertical and horizontal settings. In tilted conditions, the subjective visual vertical proved to be the orientation reproduced the most precisely. Thus, the oblique effect seemed to be not purely gravitationally or egocentrically defined but, rather, to depend on a subjective gravitational reference frame tilted in the same direction as body tilts. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
19.
The purposes of this investigation were two-fold: 1) to prospectively investigate the effect of prolonged lack of binaural amplification in the unaided ears of adults with bilaterally symmetrical sensorineural hearing impairment (BSSHI) fitted monaurally; and, 2) to prospectively investigate the effects of amplification on speech-recognition performance in the aided ears of monaurally and binaurally fitted subjects. Subjects consisted of 19 monaurally aided adults, 28 binaurally aided adults, and 19 control adults. Both ears of the experimental subjects (binaurally and monaurally aided adults) had BSSHI. The speech measures included the W-22 CID suprathreshold speech-recognition test, nonsense syllable test, and speech-perception-in-noise test. Initial testing was done between 6 and 12 weeks following hearing-aid fitting. Retests were performed approximately 1 year following the initial test. The results revealed that the mean aided minus unaided ear score for the nonsense syllable and W-22 tests increased significantly from the initial test to retest, reflecting a slight improvement in speech performance in the aided ear and a slightly greater decrement in the unaided ear. The findings were interpreted with respect to the theories of auditory deprivation and acclimatization.  相似文献   

20.
The damage caused by ear tags used for identification was studied by examining the ears of normal beef cattle and cull cows after slaughter, and by comparing the effects of metal and polyurethane ear tags in calves which had been double-tagged in the same ear. Metal tags were associated with more damage to the ears than polyurethane tags, the difference being most marked in the young calves, in which slight changes were found in 36.6 per cent and severe changes in 9.8 per cent of ears. There was a high incidence of blood around the point of insertion of the metal tags at three weeks old, but with the polyurethane tags only one calf showed slight evidence of blood around the point of insertion. In the beef cattle fitted with metal tags, a slight reaction was recorded in 40 per cent, a moderate reaction in 17 per cent and significant changes were found in 12 per cent of ears. By comparison, 16 per cent of ears with polyurethane tags showed only a slight reaction, and 80 per cent of the polyurethane tags were considered to be a good fit, compared with 37 per cent of metal tags. More changes were observed in the ears of the cull cows, with 23.5 per cent of ears with polyurethane tags being free from damage, compared with only 2.9 per cent of ears with metal tags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号