首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
沉积气压对电弧离子镀制备ZnO薄膜的结构和性能影响   总被引:1,自引:0,他引:1  
采用阴极真空电弧离子镀技术在玻璃衬底上制备出了具有择优取向的透明ZnO薄膜. 利用X射线衍射仪、扫描电子显微镜及紫外-可见吸收光谱仪分别对ZnO薄膜的结构、表面形貌及可见光透过率进行了分析.XRD结果表明,所制备的ZnO薄膜具有六角纤锌矿结构的(002)和(101)两种取向,在沉积气压>1.0Pa时所制备的ZnO薄膜具有(002)择优取向,并且非常稳定.SEM图表明,ZnO晶粒大小较为均匀,晶粒尺寸随着气压升高而变小.在400~1000nm范围内,ZnO薄膜的可见光透过率超过80%,吸收边在370nm附近,所对应的光学带隙约为3.33~3.40eV,并随着沉积气压上升而变大.  相似文献   

2.
Zn1-xCuxO薄膜的结构和光学性质   总被引:1,自引:0,他引:1  
采用CS-400型射频磁控溅射仪在Si(111)和石英基底上成功的制备了Zn1-xCuxO薄膜,薄膜的晶体取向和表面形貌用X射线衍射(XRD)仪和扫描电子显微镜 (SEM)进行测量.利用紫外-可见光(UV-vis)分光光度计来测量基片为石英的Zn1-xCuxO薄膜的透射光谱.实验表明,采用射频磁控溅射制备的掺Cu氧化锌薄膜具有(002)峰的择优取向.随着Cu掺入量的增加样品成膜质量降低,禁带宽度减小,透射率下降.  相似文献   

3.
采用射频磁控溅射法在Si衬底和玻璃衬底上制备了ZnO/Ti薄膜,利用紫外-可见分光光度计和荧光分光光度计等技术表征了ZnO/Ti薄膜的光学特性,研究了Ti缓冲层的厚度对ZnO薄膜的影响。透射吸收光谱显示所有ZnO薄膜在可见光区域的平均透过率超过80%,当引入缓冲层后,薄膜的紫外吸收边先向长波方向移动,且随着缓冲层厚度的增加紫外吸收边向短波方向移动。薄膜的荧光光谱显示,所有样品出现了位于390nm的紫外发光峰,435和487nm的蓝光双峰以及525nm的绿光峰,并对各发光峰的来源进行了探讨。  相似文献   

4.
《真空》2020,(5)
采用射频反应磁控溅射技术,在不同气压下制备了二硫化钼薄膜。利用扫描电子显微镜、X射线衍射仪、紫外可见光光谱仪等对薄膜的表面形貌、结构和光学性能进行了表征、分析。结果表明:利用射频反应磁控溅射制备的MoS_2薄膜,表面平整、颗粒均匀、致密,缺陷少;沉积气压1.2Pa条件下制备的薄膜结晶度最好;薄膜的光学带隙随沉积气压先增大后减小,1.2Pa时光学带隙最大,为1.69e V。薄膜光学带隙的变化是由沉积气压引起薄膜结晶度变化和形成缺陷不同所致。  相似文献   

5.
采用直流磁控溅射法在玻璃基片上沉积ZnO:Al(AZO)薄膜,溅射气压为0.2~2.2 Pa.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、四探针和紫外–可见分光光度计对AZO薄膜的相结构、微观形貌和电光学性质进行了表征.结果表明:薄膜的沉积速率随着溅射气压的增大而减小,变化曲线符合Keller-Simmons模型;薄膜均为六角纤锌矿结构,但择优取向随着溅射气压发生改变;溅射气压对薄膜的表面形貌有显著影响;当溅射气压为1.4 Pa时,薄膜有最低的电阻率(8.4×104 Ω·cm),高的透过率和最高的品质因子Q.  相似文献   

6.
本文采用射频磁控溅射技术分别在玻璃和硅基底上沉积Ta_2O_5薄膜,研究沉积气压的变化对薄膜光学性能的影响规律。利用UV-3600分光光度计、椭圆偏振谱仪对薄膜的光学常数及性能进行了测试。结果表明,薄膜的沉积速率随着沉积气压的增大而减小,0.6 Pa时沉积速率达最大为0.011 nm/s。在可见光区所有薄膜的平均透射率均大于80%,属于透明薄膜。薄膜的平均透射率随着沉积气压的增大而增大,当沉积气压为1.2 Pa时平均透射率最大值为85.37%,通过传输矩阵法拟合计算,验证了Ta_2O_5薄膜的光学常数。  相似文献   

7.
室温下采用射频(RF)磁控溅射在玻璃衬底上制备镓铝共掺杂氧化锌(GAZO)薄膜。采用X射线衍射仪、紫外-可见-近红外分光光度计、四探针测试仪和紫外光电子能谱等表征方法研究射频功率和工作压强与薄膜结构、光学和电学性能之间的关联。结果表明:不同条件下制备的GAZO薄膜均具有六方纤锌矿晶体结构,沿垂直衬底的(002)方向择优取向,在可见光波段(400~700 nm)的平均透射率均高于90%;在射频功率和工作压强分别为200 W和0.20 Pa条件下制备的GAZO薄膜具有最低的电阻率(1.40×10~(-3)Ω·cm)和最高的品质因子(8.10×10~(-3)Ω~(-1))。GAZO薄膜优良的光电性能使其有很大潜力作为透明电极应用于光电器件。  相似文献   

8.
用射频磁控溅射ZnO陶瓷靶、直流磁控溅射Ag靶的方法在室温下制备了Ag纳米夹层结构ZnO薄膜.用X射线衍射仪、紫外一可见分光光度计、四探针电阻测量仪和原子力显微镜对薄膜样品的结构、光学透过率、面电阻和表面形貌进行表征.结果表明,ZnO衬底有利于Ag夹层形成连续膜.随着Ag层厚度的增加,Ag夹层ZnO薄膜呈现多晶结构,Ag(111)衍射峰强度增强,面电阻先迅速下降后缓慢下降.随着ZnO膜厚度的增加,Ag夹层ZnO薄膜的透射峰红移.制得样品的最佳可见光透过率高达92.3%,面电阻小于4.2Ω/□.  相似文献   

9.
本文采用超高真空射频磁控溅射法,通过改变沉积气压、沉积时间以及进行退火处理在普通白玻基底上制备VO_2薄膜。利用XD-3型X射线衍射仪对薄膜的物相进行分析,UV-3600多功能分光光度计测试薄膜在可见光段的透过率,XP-2型台阶仪测试薄膜样品的厚度,扫描电子显微镜观察样品的微观形貌。结果表明,沉积气压为0.7Pa时获得的薄膜在可见光波段具有较高的透过率;沉积时间为60min时,薄膜较为平整且对可见光的透过率较高为38%;退火处理提高了薄膜的结晶性和透过率,制备出单斜结构的VO_2薄膜,且具有(011)晶面择优取向。  相似文献   

10.
用射频磁控溅射技术改变工作压强(0.1~9Pa)在玻璃衬底上制备B掺杂ZnO薄膜,用X射线衍射仪、紫外-可见分光光度计、四探针测试仪及粗糙度测试仪分别对薄膜进行微结构及其光电性能表征。结果发现,所有薄膜样品在420~900nm区间内的平均透光率91%;ZnO∶B晶粒尺寸随工作压强增大有先增大后减小,而电阻率先减小后增大的趋势。工作压强为0.5Pa时电阻率达到最低1.53×10~(-3)Ω·cm,所有薄膜样品禁带宽度相对于本征ZnO出现蓝移现象。  相似文献   

11.
Zinc Oxide (ZnO) thin films were prepared by cathodic vacuum arc deposition (CVAD) and filtered cathodic vacuum arc deposition (FCVAD) technology with a mixture of O2, Ar and N2. XRD patterns indicated that ZnO thin films prepared by CVAD had a combined orientation of ZnO (002) and ZnO (101). The preferential orientation ZnO (002) could be obtained at an optimum deposition pressure. On the other hand, a perfectly oriented ZnO (002) thin film prepared by FCVAD was obtained in lower pressure, which was beneficial to enhance the crystallization. The wetting behavior showed that all the ZnO thin films prepared by FCVAD were hydrophobic with low surface energy, but the reference samples of the polyurethane (PU) and glass are hydrophilic. Platelet adhesion test indicated that fewer platelets adhered and aggregated on the ZnO thin films prepared by FCVAD. The mechanism of hemocompatibility of ZnO thin films has also been investigated. It is suggested that hydrophobic surface with lower polar component and adhesive work are the two factors responsible for the excellent hemocompatibility.  相似文献   

12.
在室温下利用射频磁控溅射法在硅(100)基片上制备ZnO薄膜,利用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结晶性能进行分析。研究了制备条件对薄膜沉积速率的影响。分析了薄膜沉积速率对薄膜结晶状况的影响及源气体中的氧气和氩气的流量比对薄膜结晶状况的影响。研究结果表明,薄膜的生长速率强烈依赖于射频功率和工作气压,薄膜的结晶性能强烈依赖于薄膜的沉积速率和反应气体中氧气和氩气的流量比。制备高结晶质量的ZnO薄膜的最佳工艺参数为靶到衬底的距离为4cm,输入功率为250W,源气体中氩气和氧气的流量比n(Ar)∶n(O2)为5∶20,溅射工作气压为2Pa。在最佳工艺条件下所制备的薄膜表面平整致密,接近单晶,在可见光区的透射率高达90%。  相似文献   

13.
ZnO 薄膜包装材料溅射制备工艺与阻隔性能研究   总被引:1,自引:1,他引:0  
目的为了解决普通聚合物包装塑料对水、氧的阻隔能力不足,以及包装内容物货架时间短等问题,研究氧化锌(ZnO)沉积复合薄膜制备工艺与阻隔性能之间的关系,探索其应用于包装材料的可行性。方法采用射频磁控溅射技术(RF),以ZnO为靶材,在PET塑料表面沉积制备氧化锌薄膜包装材料,并详细分析射频溅射功率、沉积时间与工作气压对ZnO复合薄膜微观形貌、沉积速率以及阻隔性能的影响。结果当溅射功率为150 W,沉积时间为30 min,工作气压为0.8 Pa时,ZnO薄膜均匀且致密,阻隔能力最强,其氧气透过率(OTR)降低为1.23 m L/(m2·d),水蒸汽透过率(WVTR)降低为0.382 g/(m2·d)。与相同厚度下的PET原膜相比,所制备的ZnO高阻隔薄膜的透氧率降低了49.5倍,透湿率降低了17.6倍。结论射频溅射参数通过影响复合薄膜的微观形貌、致密程度、沉积速率以及沉积层厚度等方面对其阻隔能力会产生较大影响。  相似文献   

14.
We report the influence of deposition parameters such as oxygen partial pressure and overall sputtering pressure on the structural and optical properties of the as-grown ZnO nanocrystalline thin films. The films were prepared by dc magnetron sputtering using Zn metal target under two different argon and oxygen ratios at various sputtering pressures. Microstructure of the films was investigated using X-ray diffraction and scanning electron microscopy. Optical properties of the films were examined using UV-Visible spectrophotometer. The results show that the films deposited at low oxygen partial pressure (10%) contain mixed phase (Zn and ZnO) and are randomly oriented while the films deposited at higher oxygen partial pressure (30%) are single phase (ZnO) and highly oriented along the c-axis. We found that the oxygen partial pressure and the sputtering pressure are complementary to each other. The optical band gap calculated from Tauc's relation and the particle size calculation were in agreement with each other.  相似文献   

15.
利用中频脉冲直流磁控溅射法制备了平面ZnO:Al(AZO)透明导电薄膜,研究了沉积压力、衬底温度和溅射功率对AZO薄膜光电性能、薄膜稳定性的影响.结果表明:在较低沉积压力、衬底温度及溅射功率下,可获得具有低电阻率、高透过率、高稳定性的AZO薄膜.  相似文献   

16.
Zinc oxide (ZnO) films were successfully deposited on silicon, silicon dioxide, and glass substrates by radio frequency magnetron sputtering at different deposition conditions. Field emission scanning electron microscopy, X-ray photoelectron spectroscopy, transmission and photoluminescence measurements were employed to analyze the effect of the deposition conditions and the postdeposition annealing treatment on the surface morphology, structure, chemical deposition and optical properties of ZnO thin films. It was found that the thickness of ZnO films decreased with increased ratio of oxygen/argon and increased temperature. The crystalline and stoichiometric quality of the film was improved by depositing at high temperature and low pressure. Crystals formed more tightly and uniformly with heat treatment under air ambient. The dark current of the ZnO metal-semiconductor-metal photodetector was reduced from 3.06 μA to 96.5 nA at 5 V after postdeposition annealing when compared with that of as-deposited ZnO. Its magnitude was found to be at least two orders lower than that of the as-deposited sample.  相似文献   

17.
In this paper, we report a buffering method of improving the quality of ITO thin films on glass by r.f. magnetron sputtering. By applying a ZnO buffer before the ITO deposition in the same run of sputtering, ITO films showed single (111)-oriented highly textured structure, while ITO films showed mixed-oriented polycrystalline structure on bare glass. A design of experiment was taken out to minimize the resistivity of ITO films in the deposition parameter space (oxygen ratio, total gas pressure, and temperature). Resistance measurements showed that the ITO films with ZnO buffers had a remarkable 50% decrease of resistivity comparing to those without ZnO buffers at optimized deposition condition. Room-temperature Hall effect measurements showed that the decrease in resistivity comes from a large increase of mobility and a slight increase of carrier density after forming gas annealing. The ZnO/glass may be a good alternative substrate to bare glass for producing high quality ITO films for advanced electro-optic applications.  相似文献   

18.
Nonpolar (112?0) ZnO thin films (a-plane ZnO) have been grown on (11?02) sapphire substrates (r-plane sapphire) by a simple atmospheric pressure single-source chemical vapor deposition (SSCVD) approach. The crystallinity, surface morphology and optical property of the films were investigated using high-resolution X-ray diffraction (HRXRD), scanning electron microscope (SEM) and transmission spectrum, respectively. XRD results revealed that the ZnO films were grown on the substrates epitaxially along (112?0) orientation, and the epitaxial relationship between the ZnO films and the substrates was determined to be (112?0)ZnO∥(11?02) Al2O3, and [1?101]ZnO∥[022?1]Al2O3. The SEM image exhibited that the a-plane ZnO films showed a high density of well-aligned ZnO sheets with rectangular structure. The transmission spectrum showed that the ZnO films were highly transparent in the visible region.  相似文献   

19.
ZnO thin films were deposited on the substrates of (100) γ-LiAlO2 at 400, 550 and 700℃ using pulsed laser deposition (PLD) with the fixed oxygen pressure of 20 Pa, respectively. When the substrate temperature is 400℃, the grain size of the film is less than 1 μm observed by Leitz microscope and measured by X-ray diffraction (XRD). As the substrate temperature increases to 550℃, highly-preferred c-orientation and high-quality ZnO film can be attained.While the substrate temperature rises to 700℃, more defects appears on the surface of film and the ZnO films become polycrystalline again possibly because more Li of the substrate diffused into the ZnO film at high substrate temperature. The photoluminescence (PL) spectra of ZnO films at room temperature show the blue emission peaks centered at 430 nm. We suggest that the blue emission corresponds to the electron transition from the level of interstitial Zn to the valence band. Meanwhile, the films grown on γ-LiAlO2 (LAO) exhibit green emission centered at 540 nm, which seemed to be ascribed to excess zinc and/or oxygen vacancy in the ZnO films caused by diffusion of Li from the substrates into the films during the deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号