首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamics and heat transfer characteristics were investigated in a slurry bubble column reactor whose diameter was 0.0508 m (ID) and 1.5 m in height. Effects of gas velocity (0.025–0.1 m/s), pressure (0.1–0.7MPa), solid concentration (0–20 vol%) and liquid viscosity (1.0–38.0 mPa s) on the hydrodynamics and heat transfer characteristics were examined. The pressure difference fluctuations were analyzed by means of attractor trajectories and correlation dimension to characterize the hydrodynamic behavior in the column. The gas holdup increased with increasing gas velocity or pressure, but decreased with increasing solid concentration or liquid viscosity. It was found that the attractor trajectories and correlation dimension of pressure fluctuations were effective tools to describe the hydrodynamic behaviors in the slurry bubble column. The heat transfer coefficient increased with increasing pressure or gas velocity, but decreased with increasing solid concentration or viscosity of slurry phase in the slurry bubble column. The heat transfer coefficient value was well correlated in terms of operating variables and correlation dimension of pressure fluctuations in the slurry bubble column.  相似文献   

2.
The characteristics of pressure drop fluctuation in a 5.0 cm I.D.×250cm high circulating fluidized bed with fine polymer particles of PE and PVC were investigated. The measurements of time series of the pressure drop were carried out along the three different axial locations. To determine the effects of coarse particles and relative humidity of air on the flow behavior of polymer powders-air suspension in the riser, we employed deterministic chaos analysis of the Hurst exponent, correlation dimension and phase space trajectories as well as classical methods such as standard deviation, probability density function of pressure drop fluctuation. From a statistical and chaos analysis of pressure fluctuations, the upper dilute region was found to be much more homogenous flow compared to that in the bottom dense region at the same operating conditions. It was also found that the addition of coarse particles and higher humidity of air reduced the pressure fluctuations, thus enhancing flow stability in the riser. The analysis of pressure fluctuations by statistical and chaos theory gave qualitative and the quantitative information of flow behavior in the circulating fluidized bed.  相似文献   

3.
Characteristics of size, rising velocity and distribution of liquid drops were investigated in an immiscible liquid–liquid–solid fluidized-bed reactor whose diameter was 0.102 and 2.5 m in height. In addition, pressure fluctuations were measured and analyzed by adopting the theory of chaos, to discuss the relation between the properties of liquid drops and the resultant flow behavior of three (liquid–liquid–solid) phase in the reactor. Effects of velocities of dispersed (0–0.04 m s−1) and continuous (0.02–0.14 m s−1) liquid phases and fluidized particle size (1, 2.1, 3 or 6 mm) on the liquid drop properties and pressure fluctuations in the reactor were determined. The resultant flow behavior of liquid drops became more irregular and complicated with increasing the velocity of dispersed or continuous liquid phase, but less complicated with increasing fluidized particle size, in the beds of 1.0 or 2.1 mm glass beads. In the beds of 3.0 or 6.0 mm glass beads, the effects of continuous phase velocity was marginal. The resultant flow behavior of liquid drops was dependent strongly upon the drop size and its distribution. The drop size increased with increasing dispersed phase velocity, but decreased with increasing particle size. The drop size tended to increase with approaching to the center or increasing the height from the distributor. The size and rising velocity of liquid drops and correlation dimension of pressure fluctuations have been well correlated in terms of operating variables.  相似文献   

4.
The origin of pressure fluctuations in an internal-loop airlift reactor (ILALR) and its application in the flow transition detection are investigated. It is found that pressure fluctuations can be characterized as global pressure fluctuations and local pressure fluctuations by frequency domain analysis and wavelet analysis. The global pressure fluctuations generated by gas compression in the gas plenum and flow fluctuations in the gas-supply system have almost a linear attenuation in the downcomer and almost no attenuation in the riser, especially in heterogeneous flow regime. However, it is found that the pressure wave from bubble eruption at bed surface has little impact on the wall pressure fluctuations. The global pressure fluctuations may be explained by Sasic's model. The local bubble-induced pressure fluctuations generated by bubble passage, coalescence and breakage can be determined by bubble passage frequency bandwidth and lower coherence. After extracting the local bubble-induced pressure fluctuations from the origin wall pressure fluctuations, it is shown that the Hurst exponent of the local pressure fluctuations increases faster in the homogeneous flow regime than in the heterogeneous flow regime, which can be employed to indicate the flow regime transition.  相似文献   

5.
Fractal characteristics of gas-solids flow in a circulating fluidized bed   总被引:1,自引:0,他引:1  
A fractal approach is adopted to describe the dynamic behavior of a circulating fluidized bed. Two times series, differential pressure fluctuations along the riser height and solids momentum fluctuations along the radial direction, are measured and analyzed in terms of fractal dimensions. The influences of operating conditions and axial/radial positions on the fractal dimension are discussed. Attempts are also made to interpret the flow structure in the bed in terms of the fractal dimension. It is found that fractal analysis can provide a useful tool for understanding the characteristics of gas-solids flow in circulating fluidized beds.  相似文献   

6.
Non-uniform flow behavior of fluidized solid particles in three-phase fluidized beds has been analyzed by adopting the stochastic method. More specifically, pressure fluctuation signals from three-phase fluidized beds (0.152 m ID x 2.5 m in height) have been analyzed by resorting to fractal and spectral analysis. Effects of gas flow rate (0.01-0.07 m/s), liquid flow rate (0.06-0.18 m/s) and particle size (0.001-0.006 m) on the characteristics of the Hurst exponent, spectral exponent and Shannon entropy of pressure fluctuations have been investigated. The Hurst exponent and spectral exponent of pressure fluctuations attained their local maxima with the variation of liquid flow rate. The Shannon entropy of pressure fluctuation data, however, attained its local minima with the variation of liquid flow rate. The flow transition of fluidized solid particles was detected conveniently by means of the variations of the Hurst exponent, spectral exponent and Shannon entropy of pressure fluctuations in the beds. The flow behavior resulting from multiphase contact in three-phase fluidized beds appeared to be persistent and can be characterized as a higher order deterministic chaos.  相似文献   

7.
The complex pressure fluctuation phenomenon in gas-solid fluidized beds is systematically examined in this paper based on a comprehensive review of the literature data. The local pressure fluctuations are composed of multiple sources, including local bubble induced fluctuations, global bed oscillations and propagating pressure waves originating in other locations (e.g. bed surface, distributor and windbox). The interaction and coupling among bubble motion, under-damped oscillations of fluidized particles and bed surface, propagating compressible pressure waves and flow pulsation in gas-solid fluidized beds creates the complexity of local pressure fluctuations, and is likely responsible for the formation of complex but unique flow patterns. A few attempts have been reported in the literature on examining the interaction between bed oscillations, plenum chamber air pulsation and propagating pressure waves in fluidized beds, showing some promises on predicting the local pressure fluctuations. Future work should be focused on predicting local and global pressure fluctuations and the formation of unique surface flow patterns by coupling different contributing mechanisms.  相似文献   

8.
For the practical application of a three-phase bubble column as a reactor in the dehydration of ortho-boric acid, we investigated the bubble distribution and its effects on the reaction in a three-phase bubble column reactor (0.102 m IDx2.0 m in height) operating at relatively low pressure (below the atmospheric pressure). Effects of reaction time, temperature, gas velocity, particle size and gas injection mode (even, wall-side, central and asymmetric distribution) on the fractional conversion of the reaction were determined. The complicated bubble distribution as well as bubbling phenomena in the reactor were diagnosed and interpreted by means of the attractor trajectories and correlation dimension which were obtained from the resultant pressure fluctuations. The fractional conversion was closely related to the attractor shape or correlation dimension of the pressure fluctuations in the reactor. The fractional conversion in the case of even distribution of gas injection exhibited the highest value in all cases studied, at which the attractor of pressure fluctuations was less scattered in the phase space, while their correlation dimension had the lowest value. When the gas was injected by means of wall-side distribution, the conversion level was higher than that in case of central or asymmetric distribution mode. Although a fluid-solid heterogeneous reaction model can be applicable to the reaction, deviations from the model become considerable when the gas injection mode changes from even to wall-side, central or asymmetric mode, orderly.  相似文献   

9.
The absolute and differential pressure fluctuations in gas-solid fluidized beds have been analyzed by statistical and deterministic chaos methods. Linear low-density polyethylene (LLDPE) particles with a mean diameter of 1.23 mm were used as a fluidizing material. The statistical methods are composed of the mean, standard deviation, skewness and kurtosis, and the deterministic methods are composed of autocorrelation, mutual information function, pseudo-phase space and correlation dimension. The minimum slug velocity of LLDPE particles is found to be 0.34 m/s by using the statistical and deterministic methods. As slugs appear and grow with increasing gas velocity, pressure fluctuations in the fluidized bed of LLDPE are oscillated and more periodic. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   

10.
Local voidage fluctuations have been measured by using an optical transmittance probe at various axial and radial positions in a circulating fluidized bed riser with a 0.1 m i. d. and 10 m height. The chaotic time series analysis of the local voidage fluctuations has been adopted to characterize the nonlinear dynamics of the circulating fluidized bed riser. The variations of the correlation dimension and the Kolmogorov entropy of the voidage fluctuation were found to depend on the local time-average voidage. The axial and radial distributions of the correlation dimension and the Kolmogorov entropy were strongly affected by the solids flow structures (e.g. core-annulus flow) in various operating conditions. The correlation dimension of local voidage fluctuations increases along the riser, except the position near the distributor. Both, the correlation dimension and the Kolmogorov entropy of local voidage fluctuations near the wall, were found to be smaller than those at the center of the riser, independent of the solids circulation rate and the axial position.  相似文献   

11.
Effects of secondary air injection on the hydrodynamics such as solid holdup and gas-solid flow behavior were investigated in a circulating fluidized bed. The gas velocity in the riser, the ratio of secondary air velocity to that of primary air, and the solid circulating rate were chosen as operating variables. Fluid cracking catalyst(FCC) with a density of 1840 kg/m3 and a mean diameter of 74 um was employed as the solid phase. The secondary air was fed to the riser radially or tangentially at the wall of the column. Pressure drop fluctuations in the riser were measured and analyzed by adopting the stochastic method to characterize the effects of secondary air injection on the gas-solid flow behavior in the bed.

It has been found that the injection of secondary air into the riser can increase the solid holdup in the riser considerably, and that the tangential injection of secondary air is more effective for the increasing the solid holdup than the radial injection. However, the gas-solid flow behavior has been found to become less persistent with the injection of secondary air; the resultant flow behavior is more complex when the air is injected tangentially than radially. The solid holdups in the primary as well as secondary zones of the riser have been well correlated in terms of not only operating variables but also fractal dimension of the pressure fluctuations.  相似文献   

12.
Effects of secondary air injection on the hydrodynamics such as solid holdup and gas-solid flow behavior were investigated in a circulating fluidized bed. The gas velocity in the riser, the ratio of secondary air velocity to that of primary air, and the solid circulating rate were chosen as operating variables. Fluid cracking catalyst(FCC) with a density of 1840 kg/m3 and a mean diameter of 74 um was employed as the solid phase. The secondary air was fed to the riser radially or tangentially at the wall of the column. Pressure drop fluctuations in the riser were measured and analyzed by adopting the stochastic method to characterize the effects of secondary air injection on the gas-solid flow behavior in the bed.

It has been found that the injection of secondary air into the riser can increase the solid holdup in the riser considerably, and that the tangential injection of secondary air is more effective for the increasing the solid holdup than the radial injection. However, the gas-solid flow behavior has been found to become less persistent with the injection of secondary air; the resultant flow behavior is more complex when the air is injected tangentially than radially. The solid holdups in the primary as well as secondary zones of the riser have been well correlated in terms of not only operating variables but also fractal dimension of the pressure fluctuations.  相似文献   

13.
Hydrodynamic properties of bubbling flow through a three-phase fluidized bed with a moderately large diameter have been characterized with statistical and stochastic analyses of a comprehensive set of experimentally measured pressure fluctuations in the bed. The analyses have yielded the fluctuations' histogram, mean, maximum, minimum, standard deviation, skewness, kurtosis, and power-spectral-density function. As the gas flow rate increased with other operating conditions fixed, the mean and standard deviation increased, the skewness decreased, the distribution of the power-spectral-density function broadened, and the major frequency increased. In contrast, as the liquid flow rate increased, the mean and standard deviation decreased, the skewness and kurtosis increased, the powerspectral-density function narrowed, and the major frequency decreased. The hydrodynamic properties of a three-phase fluidized bed with a moderately large column in terms of pressure fluctuations are strongly affected by the flow rates of both the fluidizing gas and liquid.  相似文献   

14.
在双喷嘴对置气流床气化炉热模平台上,对炉内压力波动特性进行了试验研究。把小波变换和FFT相结合,验证了R/S分析方法是测量气化炉压力波动周期性的有力工具。采用R/S分析计算出Hurst指数,说明气流床气化炉内的压力波动具有分形特征,同时发现压力波动存在周期成分,从统计意义上计算出压力波动频率为0.067 Hz。用小波变换进行滤波后,再对低频信号进行FFT,得出主频约为0.053 Hz,二种方法结果吻合得比较好。用高速摄像仪对气化火焰拍照,并用“乘法串级过程”思想,解释了压力波动产生机理。  相似文献   

15.
All experiments of pressure fluctuations were carried out in a bubble column with a moderately large column of 0.376 m ID. The recently developed technique of wavelet packet transform based on localized wavelet functions is applicable to analysis of the fluctuating signals. The time series of pressure fluctuation signals have been analyzed by means of wavelet packet transform components, decomposition through best basis algorithm and timefrequency representation. By resorting to this technique, the objects in bubbly flow regime have fine scales and frequencies than ones in churn-turbulent flow regime. Thus, this wavelet packet transform method enables us to obtain the frequency content of local complex flow behaviors in a bubble column.  相似文献   

16.
钠化焙烧转炉钒渣粉体分形生长的演化行为   总被引:2,自引:0,他引:2       下载免费PDF全文
转炉钒渣焙烧提钒技术效率低,过程涉及化学反应、传递及相变过程,蕴含物相分形生长的动力学行为。对钒渣分形变化规律的研究有助于促进钒的定向转化,进而对工业提钒具有指导意义。根据金相电镜图,使用“周长-面积法”对不同焙烧条件下钒渣粉体分形维数进行计算,得到分形维数变化与物相转化的规律。结果表明,焙烧前硅相、钒相紧密包裹,分形维数数值为1.60~2.00;加入碳酸钠焙烧后尖晶石破坏,钒相逐渐分离,使分形维数小于1.20;随着钠盐加入量的增加,物相分形维数逐渐下降;二次焙烧后,稳定的钒酸钠生成,体系趋于稳定,使得分形维数进一步下降为1.10~1.20。  相似文献   

17.
Characterization of spouted bed regimes using pressure fluctuation signals   总被引:1,自引:0,他引:1  
This work compares time, frequency and phase space analyses of pressure measurements in different spouted beds. The experiments were carried out in different constructions of spouted bed apparatuses, operated under ambient conditions and under different spouting regimes. Spouted beds are used when the conventional fluidized beds fail to achieve a homogeneous and stable flow regime as, for example, in the case of non-spherical particles and in poly dispersed and finely dispersed systems. Different fluidization regimes in spouted beds have been characterized by the analysis of pressure fluctuation signals. Several flow regimes are found to exist as: fixed bed, channel formation, bubbling formation, stable spouting and slugging bed regimes. Analyses of standard deviation and chaotic time series on pressure fluctuation signals are conducted to determine the transition gas velocities. A treatment technique using the Fast Fourier Transformation of measured pressure fluctuations was developed to create plots describing the bed behaviour evolution from fixed to slugging bed. At the beginning of stable spouting the amplitude of pressure fluctuations is uniform and small.  相似文献   

18.
The heat transfer and pressure drop in a thermoplate heat exchanger operating as a condenser have been investigated experimentally. In order to separate the heat transfer resistances in the condensation process, the single phase forced convection has been studied using distilled water and Marlotherm oil in the thermoplate and correlations developed for the Nusselt number and the friction factor. For the condensation experiments, an apparatus has been constructed comprising two identical condensers composed of the same thermoplate type as employed in the single phase experiments. Isopropanol is used as a test fluid at pressures below atmospheric pressure. The heat transfer resistances in the condensation experiments are separated and expressions for the condensation heat transfer and pressure drop are developed with the aid of the results obtained in the single phase studies.  相似文献   

19.
Starting from the premise that the standard deviation, σp, of the pressure fluctuations in a fluidized bed is linearly proportional to excess gas velocity, it follows that σp is a function of particle size. This relationship has previously been recognised as a potential route to the continuous monitoring of particle size in fluidized bed processing, and is attractive because of the relative ease with which pressure and pressure fluctuations can be measured. Simple expressions with no fitted parameters can be derived for the case where the constant of proportionality between σp and excess gas velocity is unaltered by changes in mean particle size. The results of experiments with mixtures of silica sand prepared by mixing two base batches, with a different mean size, in incrementally varying proportions provide good support for the general validity of the model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号