首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
混凝-氧化复合处理印染废水,以适宜的混凝剂、氧化剂和粉煤灰助凝剂对模拟印染废水进行处理。采用正交实验,分析研究p H值、混凝剂投加量、助凝剂投加量对混凝处理效果的影响,得出最佳混凝条件;采用单因素实验研究p H值、氧化剂投加量对氧化处理效果的影响,并确定最佳氧化实验条件。  相似文献   

2.
采用Fenton法处理铝合金化铣废水,通过单因素实验和正交实验研究p H值、反应时间、转速、H2O2投加量、Fe2+投加量以及H2O2与Fe2+摩尔比对铝合金化铣废水COD的去除率的影响。结果表明,在p H=3,转速250 r/min,H2O2投加量1 m L,n(H2O2)∶n(Fe2+)=8,反应时间90 min的条件下,铝合金化铣废水COD的去除效果最佳,去除率可达到72.36%。在最佳实验条件下进行Fenton氧化降解铝合金化铣废水的表观动力学研究表明,Fenton氧化降解铝合金化铣废水对初始COD的反应级数为0.8204级。  相似文献   

3.
本实验采用了Fenton氧化法处理亚麻加工废水。考察了影响Fenton氧化处理的因素即H2O2投加量、FeSO4.7H2O投加量、pH值和反应时间。通过正交实验确定Fenton试剂处理该废水的最佳氧化条件为H2O2投加量10mL,FeSO4.7H2O投加量1.0g,pH=3,反应时间为35min。COD去除率可达70.12%,色度去除率可达81.42%,浊度去除率可高达82.96%。实验证明采用Fenton氧化实验处理该亚麻纤维加工废水具有一定的可行性。  相似文献   

4.
《印染》2016,(17)
采用臭氧预氧化-混凝沉淀工艺深度处理印染工业园区二级生化废水。考察了不同p H值、不同臭氧和混凝剂投加量时,深度处理出水浊度、色度和COD变化情况,分析了深度处理出水有机物特征。结果表明,臭氧预氧化和混凝相结合,有助于增强混凝效果,并降低深度处理出水中有机物浓度。混凝剂(PAC)最佳投加量为200 mg/L,臭氧最佳投加量为2.1 mgO_3/mg COD,色度去除率达到65%~75%,COD去除率20%~35%,浊度去除率20%~40%。臭氧投加量增大到2.5 mgO_3/mg COD,混凝效率下降,COD去除率降低23.3%。处理前后检出的有机物种类分别为32种和29种,经深度处理部分大分子有机物氧化成小分子。经臭氧预氧化-混凝沉淀工艺深度处理的印染工业园区二级生化废水能达到《纺织染整工业废水治理工程技术规范》(HJ 471-2009)漂洗回用标准要求。  相似文献   

5.
文章采用铁碳微电解原理处理单一印染废水。采用单因素分析法研究初始p H值、反应时间、铁碳比和铁炭投加量对电解处理的影响,确定最佳实验条件。实验结果表明:铁碳微电解处理单一印染废水的最佳脱色率高达95%~97%。  相似文献   

6.
就O3/H2O2联合氧化工艺对2,4-二氯酚废水的降解效果进行研究。通过试验明确了O3投加浓度、废水初始p H值、H2O2投加浓度等因素对模拟废水中氯酚含量、CODCr两个指标的降解效果,同时应用单独O3氧化法与单独H2O2氧化法与O3/H2O2联合氧化法就降解效果相比较。结果表明,初始p H值对氧化效果有影响,在中性及偏碱性的条件下易达到较高去除率;随着H2O2投加浓度的增加,对CODCr的去除率随之提高,但到了投加浓度1.0m L/L之后,去除率提高不明显;最后,在O3投加浓度为63mg/L,反应时间60min,初始p H7.5,H2O2投加浓度为1.0m L/L时,2,4-DCP的去除率为99%以上,CODCr去除率为60%以上,增大O3投加浓度,CODCr去除率最高可达97%,在反应时间120min之内,CODCr去除率相比于单独O3氧化和单独H2O2氧化提高了15%和85%左右。  相似文献   

7.
任朝华 《纸和造纸》2007,26(4):68-70
通过絮凝-纳米TiO2光催化氧化法对造纸废水进行了处理,并对其处理工艺进行了研究。讨论了在常温下,混凝过程中硫酸铝的投加量和废水pH值以及纳米光催化氧化过程中纳米TiO2投加量、H2O2投加量和光照时间等因素对造纸废水的COD去除率的影响,结果表明,造纸废水的COD去除率达到95%以上,色度去除率达到98%以上,pH值6.82,造纸废水的各项指标达到了排放标准。  相似文献   

8.
镁盐对活性染料废水的混凝脱色研究   总被引:1,自引:0,他引:1  
采用硫酸镁为混凝剂对活性染料模拟废水进行混凝处理,探讨了pH值、硫酸镁投加量等因素对脱色效果的影响,分析了硫酸镁对不同结构红色活性染料废水的混凝脱色效果,比较了硫酸镁与硫酸亚铁对活性染料废水混凝脱色效果,并对实际印染废水采用硫酸镁进行脱色处理,测试其COD、浊度和色度等指标.结果表明,硫酸镁对活性染料废水具有良好的脱色效果,在硫酸镁投加量为800 mg/L,pH值为11.0的条件下,实际印染废水脱色率、COD去除率、浊度去除率分别达到89.7%、40.5%、90.3%以上.  相似文献   

9.
《印染》2016,(22)
以壳聚糖稀土复合物为原料,探讨了投加量、p H值等对印染废水处理效果的影响。结果表明,在室温条件下,壳聚糖和稀土氯化镧的质量比为2∶1,投加量为1.0 g/L,调节印染废水p H值至4.5左右,搅拌时间60 min时的处理效果最佳,印染废水的脱色率和COD去除率分别可达92.5%和83.6%。同时将CTS-La(Ш)复合物用于织物整理中,经9次洗涤后,对大肠埃希菌和金黄葡萄球菌的抑菌率仍可达99.09%和99.06%。  相似文献   

10.
采用活性炭吸附-Fenton氧化,研究不同工艺参数对COD去除率的影响效果。研究结果表明:活性炭吸附实验的最佳条件是在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60min,COD为131.9mg/L,COD的去除率最高,为16.8%,色度的去除率为46.7%;经过活性炭预处理之后,再进行Fenton氧化实验的最佳条件是废水的初始pH=3.5,FeSO_4·7H_2O投加量为0.805g,30%H_2O_2投加量为0.2mL,反应时间为30min,COD值为42.1mg/L,COD的去除率最高,为73.4%。活性炭吸附Fenton协同处理工艺适用于造纸废水的处理。  相似文献   

11.
探讨了Fenton/电-Fenton氧化法降解2,4-二氯苯酚影响因素及降解效果。结果显示:Fenton法的最佳工艺条件是pH值为2,3%H2O2投加量为2mL,FeSO4.7H2O投加量为0.30g,去除效率在80%-85%;电-Fenton法的最佳工艺条件是1mol/LNa2SO450mL,电压为5V,pH为4时处理效果最好,去除效率在90%-93%。对比分析研究的结果是Fenton法比电-Fenton法反应速率快、消耗的药品量大、产生的Fe(OH)3沉淀多、去除效果差,但是电耗低。  相似文献   

12.
采用填充石英砂的流化床-Fenton技术深度处理印染废水,以印染废水COD去除率为指标,探究石英砂填充率、反应时间、pH、Fe^2+浓度、H2O2用量对处理效果的影响。结果表明,优化反应条件为石英砂填充率15%、反应时间60 min、pH=4、Fe^2+浓度0.2 mol/L、H2O2用量0.7 mL/L,流化床-Fenton技术对印染废水的COD去除率达到76.5%。  相似文献   

13.
采用Fenton法预处理垃圾渗滤液,考察了初始p H值、Fe SO4·7H2O投加量、H2O2/Fe2+物质的量比及反应时间对Fenton氧化处理效果的影响。研究的主要结论如下:(1)p H、n(H2O2)/n(Fe2+)、Fe SO4·7H2O投加量是影响Fenton氧化处理效果的主要因素,反应时间对其也有一定影响。这些因素的主次关系为:(1)p Hn(H2O2)/n(Fe2+)Fe SO4·7H2O投加量反应时间;(2)在p H为3.0、Fe SO4·7H2O投加量为1.2mmol/L、H2O2与Fe2+摩尔比为8:1、反应时间为30分钟条件下,COD去除率可达到62.3%。  相似文献   

14.
采用微波强化Fenton氧化法处理含阴离子表面活性剂十二烷基磺酸钠(SDS)的弱酸艳红B染色废水,探讨初始pH值、H2O2投加量、FeSO4投加量、微波功率、反应时间对废水色度和COD去除率的影响。结果表明:在pH值为2.5、30%H2O2投加量为4 mL/L、FeSO4投加量为100 mg/L、微波功率为539 W、反应时间为10 min条件下,废水色度去除率达到99.1%,COD去除率达到81.9%。微波辐射、Fenton氧化、水浴强化Fenton氧化、微波强化Fenton氧化4种方法的对比实验表明,微波、Fenton氧化对染色废水的降解起协同作用,微波强化Fenton氧化法处理染色废水能显著缩短处理时间、降低Fenton试剂用量、提高COD去除率。  相似文献   

15.
通过实验制备了新型无机高分子絮凝剂聚硅酸铝铁,对制浆中段废水进行混凝处理研究。考察了铝铁硅比例、聚硅酸铝铁投加量和p H因素对混凝效果的影响。试验结果表明,当合成的聚硅酸铝铁絮凝剂中Al:Fe:Si=1∶1∶2,聚硅酸铝铁的最佳投加量为30m L/L,p H为7时,CODCr的去除率达到75.6%,色度去除率达到95.8%。聚硅酸铝铁的絮凝效果以及产生的絮体的沉降速度均优于PAC。  相似文献   

16.
Fenton法深度处理制浆造纸综合废水实验研究   总被引:4,自引:0,他引:4  
采用Fenton法对造纸厂二级处理后出水进行深度处理,探讨了H2O2/Fe2+、H2O2投加量、体系pH值等条件对CODcr和色度去除效果的影响,实验结果表明:生化处理后采用Fenton高级氧化法,可使废水CODcr和色度进一步下降.当体系pH值2~3,H2O2/Fe2+摩尔比为5∶1,30%H2O2投加量为1mL/L时,出水CODcr可降低至50mg/L以下,色度去除率大于80%,可满足更为严格的造纸废水排放标准.  相似文献   

17.
采用铁碳床联合过氧化氢氧化-混凝技术对制浆造纸生化处理后的出水进行深度处理,考察了pH值、反应时间、H2O2投加量和进水水质等不同操作条件下对CODCr和色度去除的影响.结果表明,在pH值为5、反应时间为120 min、H2O2投加量为100 mg/L的条件下对污染物去除效果最佳,进水CODCr浓度对CODCr和色度去除影响不大.进水CODCr为520 mg/L、色度为400倍情况下,出水CODCr低于100 mg/L,色度低于50倍,出水各项指标均达到《制浆造纸工业水污染物排放标准》 (GB3544-2008).  相似文献   

18.
Fenton和光-Fenton反应处理二次纤维制浆废水的研究   总被引:6,自引:0,他引:6  
采用高效节能的Fenton和光-Fenton技术对二次纤维制浆废水的处理进行对比研究。结果表明,Fenton和光-Fenton技术处理该废水非常有效,在最佳实验条件下(Feton试剂最佳物质的量比为10:1、H2O2用量1678.75mg/L、温度为30%、Fenton和光-Fenton反应体系的最佳pH值分别为2.8和3.0),经过90min的反应。可使二次纤维制浆废水的最大吸光度降低约92%和99%,并可去除87%和95%的CODm减小Fenton试剂比可加快有机物的降解速率;增加H202用量可以增加有机物的降解程度;根据废水C0DG2值计算得到的H2O2理论投加量可以满足降解废水中有机物的需求;光照可提高最佳pH值,显著提高较高pH值体系的有机物降解速率和废水处理效果;光源和光照强度不同,有机物的降解程度不同。  相似文献   

19.
《印染》2017,(16)
采用复合氧化剂耦合铁碳流化床深度处理某印染厂二级生化出水,考察了氧化剂和硫酸亚铁投加量、反应时间及pH值对印染废水COD去除率的影响。通过正交试验确定了最佳工艺条件为:pH值2.5、反应时间2 h、10%硫酸亚铁投加量7.5 mL/L、氧化剂投加量1 mL/L,COD去除率高达78.5%。利用紫外光谱初探氧化降解产物,根据光谱图推测难降解有机物被氧化为CO_2和H_2O等无机物质。  相似文献   

20.
响应面法优化甘薯废水混凝沉淀工艺   总被引:1,自引:0,他引:1  
采用响应面法(response surface methodology,RSM)对甘薯废水混凝沉淀工艺进行优化。以化学需氧量(chemical oxygen demand,COD)去除率为响应值,分别考察混凝剂添加量、助凝剂添加量和废水p H值对处理效果的影响。结果表明,甘薯废水最佳混凝沉淀条件为聚合氯化铝(poly-aluminum chloride,PAC)添加量0. 92 m L、聚丙烯酰胺(poly-acrylamide,PAM)添加量0. 32 m L、p H值7. 0,在此条件下COD去除率为47. 95%,与预测值基本一致。在此基础上采用混凝-臭氧氧化联合法对废水进行处理,臭氧通气时间5 min,通气量0. 156 mg(臭氧)/mg(COD),混凝条件最优,该处理工艺下,COD去除率、悬浮物(suspended substance,SS)去除率和浊度去除率分别为90. 54%、93. 81%和90. 21%,p H值为7. 83。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号