首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
《混凝土》2017,(6)
偏高岭土作为一种优秀的水泥替代材料,一直是众多学者的研究对象,这其中偏高岭土混合水泥的水化性能更是研究的热点。为充分理解偏高岭土混合水泥水化性能以更好把控其宏观性能,从水化热、水化产物和浆体孔径分布三个方面对偏高岭土混合水泥的水化研究作一个综述。通过对相关文献的总结和分析,结果表明偏高岭土通常会提高水化热速率和热峰值,显著降低水化产物Ca(OH)_2数量,改善浆体微观结构。最后对偏高岭土的未来研究方向和发展趋势做了展望。  相似文献   

2.
偏高岭土及龄期对水泥土强度影响的试验研究   总被引:1,自引:0,他引:1  
通过对3 d、7 d、14 d、28 d、60 d、90 d龄期下5种偏高岭土掺入比的水泥土强度研究,得到了用粉质粘土制得的水泥土当中强度达到最佳时的偏高岭土掺入比,并结合水泥土和偏高岭土的作用机理,解释了掺入偏高岭土后的水泥土强度随偏高岭土掺入比变化的原因。此外,通过软件Origin 8.6对不同偏高岭土掺入比下水泥土强度随龄期的变化规律进行了统计分析,得到了在同一偏高岭土掺入比下水泥土无侧限抗压强度与龄期的统计公式。  相似文献   

3.
研究了水泥浆、偏高岭土地聚物、掺粉煤灰偏高岭土地聚物、水泥浆-偏高岭土地聚物增强处理再生骨料对混凝土抗压强度的影响。结果表明:四种增强材料处理的再生骨料对混凝土抗压强度的影响顺序大小为水泥浆-偏高岭土地聚物>偏高岭土地聚物>水泥浆>掺粉煤灰偏高岭土地聚物。  相似文献   

4.
高岭土煅烧活化温度的初选   总被引:2,自引:0,他引:2  
为得到高岭土的最佳活化温度,利用差热-热重(DSC-TG)、核磁共振(NMR)和红外光谱 (IR)等测试方法对高岭土及其在不同温度(700,800,900,1 000 ℃)条件下的煅烧产物进行了分析.结果表明:高岭土经900 ℃煅烧后所生成的偏高岭土反应活性最高;煅烧后的高岭土内部结构发生显著变化,结构水大量失去,Al的配位数发生转变,高活性的五配位铝(AlⅤ)大量生成;高岭土的振动特征吸收峰消失,出现了偏高岭土的振动特征吸收峰.实验证实:高岭土在900 ℃下煅烧后再经化学激发所得到的地聚合物其抗压强度最高,80 ℃下养护3,7 d后其抗压强度分别达到了33.8,35.3 MPa. SEM观察发现,其断裂面内部结构呈致密的珊瑚状三维空间形态.  相似文献   

5.
采用热分析和XRD衍射分析方法,对偏高岭土中活性氧化铝进行了定性分析。结果表明,高温煅烧破坏了高岭土的晶型结构,使得高岭土中非活性的氧化铝转变为活性的氧化铝。为进一步测得偏高岭土中活性氧化铝的含量,采用铬天青-S分光光度法测试了偏高岭土中活性氧化铝的含量,并研究了活性氧化铝含量与偏高岭土胶凝性能的关系。结果表明:偏高岭土中活性氧化铝可通过酸浸溶出,采用铬天青-S分光光度法能准确地测试偏高岭土中活性氧化铝的含量;龙岩高岭土在600℃下煅烧6 h获得的偏高岭土活性最高,其活性氧化铝含量为24.9%,用其制备的地聚合物3 d抗压强度也最大,达到58.1 MPa;偏高岭土中活性氧化铝含量与用其制备的地聚合物的抗压强度有很好的对应关系。  相似文献   

6.
采用地方低质高岭土和煤矸石,通过精选加工处理后合成原料,进行了详细的活化试验和合成试验,总结出了各工艺参数对产品性能的影响关系,并就此作了理论探讨,试验结果表明,用低质高岭土完全可以生产出质地优良的4A分子筛。  相似文献   

7.
通过热重-差式扫描量热仪、原子力显微镜、扫描电子显微镜-能谱分析研究了偏高岭土对硅酸盐水泥水化产物Ca(OH)2的含量,C-S-H凝胶的形貌特征、化学组成和堆聚结构的影响,讨论了水化产物性质随偏高岭土掺量变化的规律。结果表明:偏高岭土的掺入,水化产物Ca(OH)2的含量相应降低,在偏高岭土掺量15%时,水化28d龄期试样中Ca(OH)2的质量分数由18.68%降低到13.66%;同时C-S-H凝胶颗粒尺寸随着偏高岭土掺量的增加而逐渐减小,堆聚更加紧密,偏高岭土与水泥水化产物Ca(OH)2反应生成结构致密稳定性更好的低Ca/Si值的C-S-H凝胶,改善了C-S-H凝胶的结构和化学组成。  相似文献   

8.
结合一定条件下的水泥基材料泛碱处理措施与计算机图像分析技术,提出了一种定量表征水泥基材料泛碱程度的方法。基于该项方法,研究活性矿物掺合料偏高岭土对水泥基材料泛碱问题的影响。同时采用热重分析测试方法分析不同掺量偏高岭土的水泥基材料内部泛碱物质含量,并研究了偏高岭土对材料力学性能的影响。结果表明,适宜偏高岭土可以有效地抑制水泥基外墙系统的泛碱问题并保持其良好的力学性能。  相似文献   

9.
泡沫轻质土作为一种新型的轻质填料,目前被广泛用于软土地基处理、道路加宽与桥台台背回填等方面。为了改善泡沫轻质土的性能,采用偏高岭土等量取代水泥,通过正交试验提出了偏高岭土泡沫轻质土最优配合比,并通过试验探讨了不同胶凝材料用量、偏高岭土掺量以及水胶比对轻质土抗压强度的影响规律,进一步对其干缩、干湿循环、抗冻性能及微观形貌进行了试验研究,最后确定了其初步最佳配合比。结果表明:泡沫轻质土抗压强度影响因素的显著性大小为:偏高岭土掺量胶凝材料用量水胶比;随水胶比的增大,其各龄期干缩率减小,而其干湿循环及冻融循环后的抗压强度损失率逐渐减小;随偏高岭土掺量增加,其各龄期干缩率先减小后增大,当其掺量为20%时干缩率最小,而其干湿循环及冻融循环后的抗压强度损失率逐渐增大;综合各性能得到偏高岭土泡沫轻质土最佳配合比为:水泥∶偏高岭土∶发泡剂∶水=1∶0.25∶0.025∶0.69。随着偏高岭土掺量的增加,试件内部偏高岭土易发生团聚、大气泡数量增加,导致结构密实度较差,不利于强度的发展。  相似文献   

10.
王广卫 《混凝土》2023,(7):122-125
以偏高岭土作为地聚物,在塑性混凝土制备过程中加入不同掺量的偏高岭土。然后研究了不同偏高岭土掺量下混凝土的早期(3、7 d)抗压强度和劈裂抗拉强度,并采用扫描电子显微镜(SEM)来研究不同偏高岭土掺量下混凝土在3、7 d养护龄期下水化产物的形貌。早期强度结果表明,随着偏高岭土掺量的增加,制备出的塑性混凝土早期的抗压强度和劈裂抗拉强度呈现先升高后降低的趋势,最佳的偏高岭土掺量为水泥总质量的10%。SEM结果表明适量的偏高岭土掺量可以增加早期水化产物之间的密实性,进而导致塑性混凝土早期强度是升高。总的来说,以上结果为地聚物在塑性混凝土中的应用提供一定的试验基础与数据支撑。  相似文献   

11.
研究沸石粉和偏高岭土2种矿物掺合料对固态碱矿渣粉煤灰胶凝材料的改性效果.结果表明,偏高岭土对碱矿渣粉煤灰胶凝材料的抗压强度具有明显增强效果,但降低了抗折强度:沸石粉对抗压强度和抗折强度均有增强作用;作为碱矿渣粉煤灰胶凝材料的活性掺合料,沸石粉优于偏高岭土,具有进一步研究的价值:偏高岭土和沸石粉在碱矿渣粉煤灰胶凝材料中发挥的强度优势不及矿渣粉煤灰混合料明显.  相似文献   

12.
Clinoptilolite tuffs from areas in Thrace region of Greece are compared with synthetic zeolites NaY and NH4Y for the uptake of N4-ethyl-N4-(2-methansulphonamidoethyl)-2-methyl-1,4-phenylenediamin (sesquisulphate, monohydrate) with the trade name CD-3 for the purpose to be used for clean-up and recycling photo-finishing and photo-developing washwaters. The cation-exchange capacity is found to be 6.15-11.1 mg/g for zeoliferous tuffs at equilibrium concentration of 50 ppm CD-3 in aqueous solution compared to 65.0 mg/g of NaY and 48.2 mg/g for NH4Y synthetic zeolites corresponding to the removal of CD-3 from 120 to 2001 of 50 ppm aqueous solution per kg of natural zeoliferous tuff; this capacity is only 6-10 times lower than type-Y synthetic zeolite. Initial rates of uptake are 20.8 mg/l/min for natural and 38.5 mg/l/min for synthetic zeolites. Regeneration levels of 55, 23, 35, and 33% are obtained for MCH, SF, NaY, and NH4Y, respectively. The rapid and almost complete uptake of CD-3 from its aqueous solutions at low CD-3 concentrations by the natural zeolites is promising for such an application.  相似文献   

13.
将粒化高炉矿渣(GGBFS)掺入偏高岭土(MK)中,研究了矿渣掺量对具有常温固化能力胶凝材料稠度、凝结时间及力学性能的影响,并通过X射线衍射(XRD),傅里叶变换红外光谱(FTIR),扫描电镜(SEM)等分析手段研究了偏高岭土-矿渣复合体系的反应机理.结果表明:将矿渣掺入偏高岭土能减小浆体的稠度,缩短其凝结时间;偏高岭土-矿渣复合体系可在常温下固化,得到具有较高强度的硬化浆体;在碱激发作用下偏高岭土-矿渣复合体系发生了地质聚合反应和矿渣水化反应,生成了N-A-S-H凝胶与C-S-H凝胶共存的结构;激发剂模数和偏高岭土与矿渣的质量比是影响反应产物强度的主要因素——矿渣掺量不高于40%(质量分数)时,反应产物的强度随激发剂模数增大而降低;矿渣掺量超过60%后,反应产物强度随激发剂模数增大而提高.  相似文献   

14.
In the present work, the use of three Slovak poor metakaolin sands with different metakaolin content (36.0% (MK-1), 31.5 (MK-2) and 40.0% (MK-3)) and specific surface has been deeply studied as mineral addition for Portland cement. The percentage of metakaolin sands in the blended cements was 10%, 20% and 40%.The pozzolanic tests confirm that the three metakaolin sands show a high pozzolanic activity, comparable to a commercial metakaolin and silica fume. With respect to the rheological behaviour, metakaolin sand–blended-cement pastes fit to Herchel–Bulkley model and their yield stress increases as the metakaolin content increases. MK-3 sand with the highest pozzolanic activity and highest specific surface induces the highest increase of the yield stress.From the calorimetric results it is concluded that the addition of MK-1 and MK-2 sands to Portland cement induces a delay up to 2 h of the precipitation of the main hydration products in the blended-cement pastes and decreases the maximum heat evolution rate. On the contrary, the incorporation of 40% of MK-3 sand shortens 6 h its apparition and increases significantly the maximum heat evolution rate. Additionally, the presence of the metakaolin sands reduces the heat released during the hydration process with respect to non-blended-cement pastes.The incorporation of metakaolin sand induces a decrease of the mechanical strength, being the decrease higher as the metakaolin sand content increases although they also produce a refinement in the pore structure and a decrease of the permeability.  相似文献   

15.
高岭土在经700℃~800℃热处理得到新型高活性混凝土偏高岭土(Metakaolin)矿物掺和料,所配制的混凝土具有良好的力学性能和耐久性能。本文详细介绍了MK掺和料的火山灰特征及在混凝土中的应用机理,以及国内外偏高岭土的研究现状和应用前景。  相似文献   

16.
以河南地区典型粉砂土为研究对象,制备不同石灰及偏高岭土掺量下的改良粉砂土试样,对其进行了无侧限抗压强度试验、扫描电镜(SEM)与X射线衍射(XRD)测试,并与水硬性石灰改良粉砂土进行对比分析.结果 表明:随着偏高岭土掺量的增加,改良粉砂土破坏应变增大,无侧限抗压强度提高,但强度增长率呈现先增加后减小的规律,并在偏高岭土掺量为4%时达到峰值;当养护龄期从7d增至28d时,石灰偏高岭土改良粉砂土的强度增长率明显高于石灰改良粉砂土.采用6%石灰+4%偏高岭土、8%石灰+4%偏高岭土可分别有效替代8%、10%的水硬性石灰;偏高岭土掺入后形成的水化产物可联结土颗粒并填充于孔隙,使改良粉砂土微观结构更加密实,具有一定的水硬性.  相似文献   

17.
按照分子设计的原理,通过接枝聚合反应制备了一系列具有不同侧链长度的梳型共聚物.研究了不同侧链长度的梳型共聚物对水泥/粉煤灰、水泥/硅灰以及水泥/偏高岭土体系的流变学性能及力学性能的影响.研究结果表明:侧链的长度和排列可以在一定程度上影响水泥及水泥/矿物掺合料的流变学性能和力学性能.但在各种体系中,其影响规律各不相同.与纯水泥体系相比,掺加适量的粉煤灰,可以明显提高水泥浆体的流变学性能,改善其泌水倾向,但其力学性能会明显降低;与硅灰相比,偏离岭土可以在基本不降低水泥浆体流动性的情况下,提高其力学性能.  相似文献   

18.
本文以水泥、矿渣、硅微粉、偏高岭土和一些外加剂为主要原料制备出了植被混凝土,研究了不同矿渣、硅微粉、偏高岭土掺量对植被混凝土强度和植物生长情况的影响规律。  相似文献   

19.
偏高岭土对水泥性能的影响   总被引:11,自引:1,他引:11  
本研究中使用了两种高岭土原料,一种是纯高岭土,另一种为高岭土原矿。在不同煅烧温度下制得了偏高岭土,并以不同比例配制成混合水泥,测定了混合水泥的某些物理力学性能,通过实验找出了最佳煅烧温度及最佳掺合量,分析了混合水泥的水化过程。结果表明偏高岭土具有较高的水化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号