首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The integration of nanowires and nanotubes into electrical test structures to investigate their nanoelectronic transport properties is a significant challenge. Here, we present a single nanowire manipulation system to precisely maneuver and align individual nanowires. We show that a single nanowire can be picked up and transferred to a predefined location by electrostatic force. Compatible fabrication processes have been developed to simultaneously pattern multiple aligned nanowires by using one level of photolithography. In addition, we have fabricated and characterized representative devices and test structures including nanoelectromechanical switches with large on/off current ratios, bottom-gated silicon nanowire field-effect transistors, and both transfer-length-method and Kelvin test structures  相似文献   

2.
Densely packed arrays of magnetic nanowires have been synthesized by electrodeposition filling of nanopores in alumina and titania membranes formed by self-assembling during anodization process. Emphasis is made on the control of the production parameters leading to ordering degree and lattice parameter of the array as well as nanowires diameter and length. Structural, morphological and magnetic properties exhibited by nanowire arrays have been studied for several nanowire compositions, different ordering degree and for different nanowire aspect ratios. The magnetic behaviour of nanowires array is governed by the balance between different energy contributions: shape anisotropy of individual nanowires, the magnetostatic interaction of dipolar origin among nanowires, and magnetocrystalline and magnetoelastic anisotropies induced by the pattern templates. These novel nanocomposites, based on ferromagnetic nanowires embedded in anodic nanoporous templates, are becoming promising candidates for technological applications such as functionalised arrays for magnetic sensing, ultrahigh density magnetic storage media or spin-based electronic devices.  相似文献   

3.
We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.  相似文献   

4.
Yun SH  Wu JZ  Dibos A  Zou X  Karlsson UO 《Nano letters》2006,6(3):385-389
In this work, we demonstrate that boron nanowire Y-junctions can be synthesized in a self-assembled manner by fusing two individual boron nanowires grown inclined toward each other. We show that the presence of a second liquid, in addition to the liquid Au catalyst, is critical to the inclination of the boron nanowire. The structure of the BNYJ arrays that we report here may allow construction of three- or multiple-terminal nanowire devices directly on Si-based readout circuits through controlled nanowire growth.  相似文献   

5.
Liu M  Chen Y  Guo Q  Li R  Sun X  Yang J 《Nanotechnology》2011,22(12):125302
Assembly and alignment of nanowires or nanotubes are critical steps for integrating functional nanodevices by the bottom-up strategy. However, it is still challenging to manipulate either an array of nanowires or individual nanowires in a controllable manner. Here we present a simple but versatile method of positioning and aligning nanowires by hydrodynamic focusing that functions as 'hydro-tweezers'. By adjusting the flow duration and flow rates of the sheath flows and sample flow, the density, width and position of the nanowire arrays, as building blocks of nanodevices, can be readily tuned in the hydrodynamic focusing process. This approach exhibits great potentials in the assembly of an array of functional nanodevices. With this method, multiple nanowire arrays can be positioned and aligned on predefined locations. Further focusing the sample flow, nanowires flow in single file. Thus single nanowires can also be lined up and located to desired positions.  相似文献   

6.
Strain-controlled growth of nanowires within thin-film cracks   总被引:1,自引:0,他引:1  
There is continued interest in finding quicker and simpler ways to fabricate nanowires, even though research groups have been investigating possibilities for the past decade. There are two reasons for this interest: first, nanowires have unusual properties-for example, they show quantum-mechanical confinement effects, they have a very high surface-to-volume ratio, enabling them to be used as sensors, and they have the ability to connect to individual molecules. Second, no simple method has yet been found to fabricate nanowires over large areas in arbitrary material combinations. Here we describe an approach to the generation of well-defined nanowire network structures on almost any solid material, up to macroscopic sample sizes. We form the nanowires within cracks in a thin film. Such cracks have a number of properties that make them attractive as templates for nanowire formation: they are straight, scalable down to nanometre size, and can be aligned (by using microstructure to give crack alignment via strain). We demonstrate the production of nanowires with diameter <16 nm, both singly and as networks; we have also produced aligned patterns of nanowires, and nanowires with individual contacts.  相似文献   

7.
We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.  相似文献   

8.
采用直流电沉积法制备了Ni纳米线,用SEM和TEM测试手段观察产物形貌,结果表明,合成的纳米线阵列具有排列有序、彼此平行等特点,XRD、EDX、SQUID测试手段研究了产物化学成份和磁学性质,实验发现,Ni纳米线的矫顽力在退火前后分别为67 Oe和774 Oe。  相似文献   

9.
Lee S  Lee W  Seo K  Kim J  Han SH  Kim B 《Nanotechnology》2008,19(41):415202
Nanodevices using individual indium nitride nanowires are fabricated by e-beam lithography. The nanowires have diameters of 40-80?nm, lengths up to several tens of micrometres and single-crystalline nature. We observed ohmic I-V behaviour of InN nanowires above nearly 100?K, which is consistent with the pinning Fermi level of the metal electrode near the conduction band edge of InN nanowire. At low temperatures, the device shows typical semiconductor behaviour along with a quantum tunnelling effect through the Schottky barrier rather than thermally activated transport. The activation energy calculated above and below 80?K is 28.2 and 5.08?meV, respectively. We have also fabricated a photocurrent generation device using InN nanowires. The photocurrent of an acceptor-sensitizer dyad with di-(3-aminopropyl)-viologen (DAPV) and a Ru complex on an InN nanowires/ITO plate was 8.3?nA?cm(-2), which increased by 62.7% compared to that without InN nanowire layers.  相似文献   

10.
In this report we explore the structural and optical properties of GaAs/A1GaAs heterostructure nanowires grown by metalorganic vapour phase epitaxy using gold seed-particles. The optical studies were done by low-temperature cathodo- luminescence (CL) in a scanning electron microscope (SEM). We perform a systematic investigation of how the nanowire growth-temperature affects the total photon emission, and variations in the emission energy and intensity along the length of the nanowires. The morphology and crystal structures of the nanowires were investigated using SEM and transmission electron microscopy (TEM). In order to correlate specific photon emission characteristics with variations in the nanowire crystal structure directly, TEM and spatially resolved CL measurements were performed on the same individual nanowires. We found that the main emission energy was located at around 1.48 eV, and that the emission intensity was greatly enhanced when increasing the GaAs nanowire core growth temperature. The data strongly suggests that this emission energy is related to rotational twins in the GaAs nanowire core. Our measurements also show that radial overgrowth by GaAs on the GaAs nanowire core can have a deteriorating effect on the optical quality of the nanowires. Finally, we conclude that an in situ pre-growth annealing step at a sufficiently high temperature significantly improves the optical quality of the nanowires.  相似文献   

11.
A new type of nanoscale bioswitch based on the electrical detection of chemically induced cleavage of chemical bonds, which bind individual nanowires across a pair of electrodes is demonstrated. Carbon nanofibers are manipulated using dielectrophoresis to form single-nanowire bridges across microelectrode junctions, and are anchored through a biomolecular interaction. Once in place, chemically induced cleavage of a recognition site along the bonds linking the nanowire to the electrodes allows the nanowire to be easily removed by a flow of fluid; this removal can be detected in real time via changes in the AC electrical response. This form of sensing is inherently digital in nature as the removal of a single nanowire produces a sudden decrease in the current between electrodes and is essentially a chemoselective fuse. These results suggest that this sensing principle could be a general method for digital chemical and/or biological sensing using individual nanowires.  相似文献   

12.
We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.  相似文献   

13.
A technique to study nanowire growth processes on locally heated microcantilevers in situ in a transmission electron microscope has been developed. The in situ observations allow the characterization of the nucleation process of silicon wires, as well as the measurement of growth rates of individual nanowires and the ability to observe the formation of nanowire bridges between separate cantilevers to form a complete nanowire device. How well the nanowires can be nucleated controllably on typical cantilever sidewalls is examined, and the measurements of nanowire growth rates are used to calibrate the cantilever‐heater parameters used in finite‐element models of cantilever heating profiles, useful for optimization of the design of devices requiring local growth.  相似文献   

14.
采用紫外线光刻技术与电化学沉积相结合的方法,成功制备了不同图案的铜纳米线阵列:一种是圆形图案;另一种是QDU图案.首先利用紫外线光刻技术在多孔阳极氧化铝模板(AAO)生成预设图案,以此作为"二次模板";再利用电化学方法将铜纳米线沉积到"二次模板"的开孔中.扫描电镜(SEM)测试结果表明,大面积、高规整的铜纳米线图案阵列各自独立地立在基底上, 同时,用电子能谱(EDS)分析了铜纳米线的化学成分.透射电镜(TEM)也探测到了铜纳米线的微结构.  相似文献   

15.
The internal electronic structures of single semiconductor nanowires can be resolved using photomodulated Rayleigh scattering spectroscopy. The Rayleigh scattering from semiconductor nanowires is strongly polarization sensitive which allows a nearly background-free method for detecting only the light that is scattered from a single nanowire. While the Rayleigh scattering efficiency from a semiconductor nanowire depends on the dielectric contrast, it is relatively featureless as a function of energy. However, if the nanowire is photomodulated using a second pump laser beam, the internal electronic structure can be resolved with extremely high signal-to-noise and spectral resolution. The photomodulated Rayleigh scattering spectra can be understood theoretically as a first derivative of the scattering efficiency that results from a modulation of the band gap and depends sensitively on the nanowire diameter. Fits to spectral lineshapes provide both the band structure and the diameter of individual GaAs and InP nanowires under investigation.  相似文献   

16.
We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.  相似文献   

17.
Ra HW  Im YH 《Nanotechnology》2008,19(48):485710
We present a systematic study on the effect of oxygen and hydrogen plasma-generated reactive species on the properties of ZnO nanowires. Upon exposure to oxygen plasma, the electrical conductivity of an individual ZnO nanowire decreased with substantial changes in the surface chemistry, indicating a decrease in the number of donor-like defects and an increase in the number of electron-trapping species. In contrast, an individual ZnO nanowire exposed to hydrogen plasma showed a drastic increase in conductivity up to two orders of magnitude due to the incorporated hydrogen acting as a shallow donor inside the ZnO nanowires without a sputtering process.  相似文献   

18.
Here we report for the first time accurate and comprehensive measurements of electrical properties of individual CoPt/Pt multilayer nanowires both with periodic and non-periodic layer structures. A remarkably high failure current density of 1.69 × 10(12) A m(-2) for the periodic MNW and a similar 1.76 × 10(12) A m(-2) for the non-homogeneous MNW has been measured. The resistance of both types of multilayer nanowire structures are well fitted by a series resistance model, determining the separate resistance contribution of the component layers and magnetic/nonmagnetic interfaces for a single multilayer nanowire. The field-dependent interface resistance of both samples is calculated, 13.2 Ω for periodic layer structures and 4.84 Ω for non-periodic layer structures. The clear physical picture of the resistance distribution within individual multilayer nanowires is then determined. The accurate electrical testing of magnetic multilayer nanowires provides basic and necessary electrical parameters for their usage as building blocks or interconnects in nanoelectronics and nanosensors.  相似文献   

19.
Pang C  Yan B  Liao L  Liu B  Zheng Z  Wu T  Sun H  Yu T 《Nanotechnology》2010,21(46):465706
Ternary oxides have the potential to display better electrical and optical properties than the commonly fabricated binary oxides. In our experiments, Zn(2)SnO(4) (ZTO) nanowires were synthesized via thermal evaporation and vapor phase transport. The opto-electrical performance of the nanowires was investigated. An individual ZTO nanowire field-effect transistor was successfully fabricated for the first time and shows an on-off ratio of 10(4) and transconductance of 20.6 nS, which demonstrates the promising electronic performance of ZTO nanowire in an electrical device. Field emission experiments on ZTO nanowire film also indicate their potential application as a field emission electron source.  相似文献   

20.
Jeon KJ  Jeun M  Lee E  Lee JM  Lee KI  von Allmen P  Lee W 《Nanotechnology》2008,19(49):495501
We present the hydrogen sensing performance of individual Pd nanowires grown by electrodeposition into nanochannels of anodized aluminum oxide (AAO) templates investigated as a function of the nanowire diameter. Four-terminal devices based on individual Pd nanowires were found to successfully detect hydrogen gas (H(2)). Our experimental results show that the H(2) sensing sensitivity increases and the response time decreases with decreasing diameter of Pd nanowires with d = 400, 200, 80 and 20?nm, due to the high surface-to-volume ratio and short diffusion paths, respectively. This is in qualitatively good agreement with simulated results obtained from a theoretical model based on a combination of the rate equation and diffusion equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号