首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of pyrrolopyrimidine derivatives were examined for their interaction with rat recombinant gamma-aminobutyric acid (GABA)A receptors using the whole cell patch clamp and equilibrium binding techniques. In the alpha 1 beta 2 gamma 2 subtype of GABAA receptors expressed in human embryonic kidney cells, a prototype pyrrolopyrimidine, U-89843A (7H-pyrrol[2,3-d]pyrimidine,6,7-methyl-2,4-di- 1-pyrrolidinyl,hydrochloride), dose-dependently enhanced 5 microM GABA-induced Cl- currents with a maximal enhancement of 362 +/- 91%, a half-maximal concentration of 2 +/- 0.4 microM and a slope factor of 1.1 +/- 0.4. The drug also inhibited [35S]t-butylbicyclophosphorothionate binding in rat cerebrocortical membranes with a similar half-maximal inhibitory concentration. The enhancement of Cl- currents by U-89843A was insensitive to Ro 15-1788 (a benzodiazepine antagonist), was also observed in the alpha 3 beta 2 gamma 2 and alpha 6 beta 2 gamma 2 subtypes (no selectivity to different alpha-isoforms unlike many benzodiazepines), but was absent in the receptor subtypes consisting of two subunits (alpha 1 beta 2, alpha 1 gamma 2 and beta 2 gamma 2). It has been known that neurosteroids and barbiturates are uniformly active in both the two subunit receptors, substituted pyrazinones are only active in the alpha 1 beta 2 subtype and loreclezole is active in the subtypes containing beta 2. We propose that U-89843A interacts with an allosteric site on GABAA receptors distinct from the sites for benzodiazepines, barbiturates, neurosteroids, substituted pyrazinones or loreclezole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
GABA acts as a trophic signal for cultured embryonic rat monoamine neurons by activating GABA(A) receptors. These effects are blocked by the organochlorine insecticide dieldrin and the classic GABA(A) antagonist bicuculline. Both dieldrin and another organochlorine insecticide, lindane, block the effects of GABA on the GABA(A) receptor by binding directly to the Cl- channel. Therefore, prenatal exposure to these chemicals could lead to disturbances in the trophic actions of GABA on monoamine neurotransmitter systems in the embryonic brain and produce alterations in GABA(A) receptor expression and function. Effects of daily prenatal exposure to organochlorine insecticide (dieldrin or lindane) or bicuculline from embryonic day (E)12-17 were determined in brains of E17 fetal rats using t-[35S]butyl-bicyclophosphorothionate ([35S]TBPS) binding. This radioligand was chosen because, like organochlorine insecticides, it binds directly to GABA(A) receptor/Cl- channels. [35S]TBPS binding was analyzed in extensively washed membranes from E17 brainstem and whole brain with the brainstem removed ('rest of brain') at a TBPS concentration that approximated the KD determined in [35S]TBPS saturation binding experiments performed on normal E17 rat brainstem. In utero exposure to dieldrin, lindane, or bicuculline from E12-E17 caused a significant reduction in the amount of [35S]TBPS binding in E17 brainstem compared to vehicle-injected controls, but had no significant effect on 'rest of brain'. These data suggest that in utero exposure to organochlorine insecticides that act as GABA(A) antagonists negatively regulate expression of GABAA receptors in fetal brainstem. If these effects persist, they could lead to disturbances in postnatal functions of the ascending GABAergic system, possibly with behavioral consequences.  相似文献   

3.
Murine gamma-aminobutyric acid type A (GABAA) receptor beta 1, beta 2, and beta 3 subunits were expressed in Xenopus oocytes and studied using the two electrode voltage clamp technique. Although all three beta-subunits were unresponsive to GABA when expressed as homomers, the intravenous general anaesthetics pentobarbital, etomidate and propofol induced currents in beta 2 and beta 3 homomers. The pentobarbital-induced currents in beta 3 homomers showed a dose dependence with an ED50 of 89 +/- 8.9 microM and a Hill coefficient of 0.94 +/- 0.08. Zinc (50 microM) blocked (61.1 +/- 5.6% of control) and 200 microM lanthanum potentiated (139 +/- 8.6% of control) the pentobarbital-induced current. This current was also blocked by picrotoxin but was insensitive to the GABAA receptor antagonist bicuculline. These observations indicate that the full expression of the agonistic action of GABA requires the presence of an alpha-subunit, in contrast to the agonistic action of intravenous general anesthetics, where the presence of a beta2 or beta 3-subunit is sufficient. The difference in the agonistic action of intravenous anaesthetics among these highly homologous beta-subunits suggests that the beta-subunit homomeric receptors may be useful to further define the molecular sites of action of intravenous general anaesthetics and other functional domains on GABAA receptors.  相似文献   

4.
The multisubunit gamma-aminobutyric acid type A (GABAA) receptor is heterogeneous in molecular and pharmacological aspects. We used quantitative autoradiographic techniques to generate detailed pharmacological profiles for the binding of the GABAA-receptor ionophore ligand tert-[35S]butylbicyclophosphorothionate ([35S]TBPS) and its modulation by GABA and the GABAA antagonists bicuculline and 2'-(3'-carboxy-2',3'-propyl)-3-amino-6-p-methoxyphenylpyrazinium bromide (SR 95531). Regional differences in the actions of bicuculline and SR 95531 were correlated with the expression of 13 GABAA subunits in brain as reported previously. In some brain regions SR 95531 reduced [35S]TBPS binding much more than bicuculline, as illustrated by high ratios of bicuculline- to SR 95531-modulated [35S]TBPS binding. This ratio correlated positively with alpha 2-subunit mRNA levels. Binding that was equally affected by SR 95531 and bicuculline occurred prominently in regions with abundant alpha 1 mRNA expression. The present findings thus reveal a novel pharmacological heterogeneity based on differences between alpha 1 and alpha 2 subunit-containing GABAA receptors. The data aid in developing GABAA-receptor subtype-specific antagonists and in establishing receptor domains critical for the actions of GABAA antagonists.  相似文献   

5.
A number of propofol (2,6-diisopropylphenol) congeners and derivatives were synthesized and their in vitro capability to affect GABAA receptors determined by the inhibition of the specific [35S]-tert-butylbicyclophosphorothionate ([35S]TBPS) binding to rat whole brain membranes. Introduction of halogen (Cl, Br, and I) and benzoyl substituents in the para position of the phenyl group resulted in ligands with higher potency at inhibiting [35S]TBPS binding. A quantitative structure-affinity relationship (QSAR) study demonstrated that affinity is enhanced by increases in lipophilicity of the ligand whereas affinity is adversely affected by increases in size of the substituent para to the phenolic hydroxyl group. Consistent with the displacement of [35S]TBPS and with the activation of GABAA receptors, we demonstrate that ligands displaying high affinity (i.e., 2-4, and 8) are able to increase GABA-stimulated chloride currents in oocytes expressing human GABAA receptors and to directly activate chloride currents in an electrophysiological assay. Among them, compound 4 showed a rather peculiar profile in the electrophysiological examination with cloned alpha1beta2gamma2 GABAA receptors. Indeed, compared to propofol, it displayed a much greater efficacy at potentiating GABA-elicited chloride currents, but a much lower efficacy at producing a direct activation of the chloride channel in the absence of GABA. This behavior may give to compound 4 pharmacological properties that are more similar to anxiolytic and anticonvulsant drugs than to those of general anesthetics.  相似文献   

6.
Previously, we showed that arachidonic acid and prostaglandin metabolites inhibited GABAA responses in rat cerebral cortex. Thromboxane A2 (TXA2), a metabolite of arachidonic acid, has potent actions on blood vessels and platelets, but its actions on neurons are not known. Here, we examined the effects of several TXA2 analogs on the functional and binding characteristics of GABAA receptors in rat brain. The stable analogs of TXA2, pinane and carbocyclic TXA2, and the TXA2 agonist, U-46619, inhibited muscimol-induced 36Cl- uptake in cerebral cortical synaptoneurosomes. Carbocyclic TXA2 decreased the maximal response to muscimol, consistent with a non-competitive interaction. The TXA2 antagonist, SQ 25,548, did not block the effects of either arachidonic acid or carbocyclic TXA2. Neither the biologically inactive metabolite of TXA2, TXB2, nor carbacyclin, a stable analog of prostacyclin (prostaglandin I2) had an effect on GABAA responses. Thus the pharmacology differs from that in vascular smooth muscle and platelets. To determine if GABAA receptors were sensitive to the thromboxanes, the effect of pinane TXA2 on the binding of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) to GABA-gated Cl- channels was measured using receptor autoradiography. Pinane TXA2 inhibited [35S]TBPS binding in a regionally selective and non-competitive manner; the greatest inhibition was in the cerebral cortex, hippocampus and striatum, areas which are selectively vulnerable to cerebral ischemia. We conclude that TXA2 can interact with neuronal membranes to inhibit GABA receptor function, independent of its actions on the cerebrovasculature and on glial cells. This may be important during pathologic states such as ischemia, when TXA2 accumulates in extracellular spaces.  相似文献   

7.
The modulation of 35S-t-butylbicyclophosphorothionate (35S-TBPS) binding by in vitro addition of gamma-aminobutyric acid (GABA), diazepam, pentobarbital, etomidate and etazolate was studied in the presence of KCl (100 mM) in the cerebellum and in the cortex of C57Bl mice. In the cortex, all of the depressant drugs caused a biphasic effect (stimulation followed by inhibition) on 35S-TBPS binding, whereas in the cerebellum only inhibition was observed. Saturation analysis revealed that the enhancement of 35S-TBPS binding was due to an increase in the affinity of 35S-TBPS for its binding sites. The introduction of a GABAA receptor antagonist, bicuculline methiodide (10 microM), into assay media altered the effects of the depressants, except for those of diazepam, on 35S-TBPS binding in a complex manner. Our results indicate that bicuculline, in addition to its GABAA receptor blocking properties, also influenced the binding of 35S-TBPS through some other, as yet unknown, mechanism(s). Thus, bicuculline not only produced a rightward shift of the dose-response curves of the central depressant drugs in the cortex, but also increased the maximal stimulation of 35S-TBPS binding. Furthermore, in the cerebellum, the previously observed drug-induced inhibition of 35S-TBPS binding was replaced by stimulation followed by inhibition in the presence of bicuculline. Finally, it was found that the in vitro addition of bicuculline had no effect on the diazepam-induced stimulation of 35S-TBPS binding. It is suggested that the regional differences in the modulation of 35S-TBPS binding in various brain structures may be due to endogenous differences in the molecular composition of GABAA receptors in various brain areas.  相似文献   

8.
The vast molecular heterogeneity of brain gamma-aminobutyric acid type A (GABAA) receptors forms the basis for receptor subtyping. Using autoradiographic techniques, we established the characteristics of cerebellar granule cell GABAA receptors by comparing wild-type mice with those with a targeted disruption of the alpha6 subunit gene. Cerebellar granule cells of alpha6(-/-) animals have severe deficits in high affinity [3H]muscimol and [3H]SR 95531 binding to GABA sites, in agonist-insensitive [3H]Ro 15-4513 binding to benzodiazepine sites, and in furosemide-induced increases in tert-[35S]butylbicyclophosphorothionate binding to picrotoxin-sensitive convulsant sites. These observations agree with the known specific properties of these sites on recombinant alpha6beta2/3gamma2 receptors. In the presence of GABA concentrations that fail to activate alpha1 subunit-containing receptors, methyl-6,7-dimethoxy-4-ethyl-beta-carboline (30 microM), allopregnanolone (100 nM), and Zn2+ (10 microM) are less efficacious in altering tert-[35S]butylbicyclophosphorothionate binding in the granule cell layer of the alpha6(-/-) than alpha6(+/+) animals. These data concur with the deficiency of the cerebellar alpha6 and delta subunit-containing receptors in the alpha6(-/-) animals and could also account for the decreased affinity of [3H]muscimol binding to alpha6(-/-) cerebellar membranes. Predicted additional alterations in the cerebellar receptors of the mutant mice may explain a surplus of methyl-6,7-dimethoxy-4-ethyl-beta-carboline-insensitive receptors in the alpha6(-/-) granule cell layer and an increased diazepam-sensitivity in the molecular layer. These changes may be adaptive consequences of altered GABAA receptor subunit expression patterns in response to the loss of two subunits (alpha and delta) from granule cells.  相似文献   

9.
Alcohol-nontolerant (ANT) rats, produced by selective breeding for high sensitivity to motor-impairing effects of ethanol, have a point mutation in the cerebellar gamma-aminobutyric acid type A (GABAA) receptor alpha 6 subunit, which has been proposed to underlie enhanced sensitivity to benzodiazepine agonists as well. We compared ANT and alcohol-tolerant (AT) rats using behavioral and neurochemical methods to assess the significance of alpha 6- and non alpha 6-containing GABAA receptor subtypes. Motor performance in a tilting plane test was largely unaffected by a type I benzodiazepine receptor-preferring agonist, zolpidem [1-10 mg/kg, intraperitoneally (IP)], partial benzodiazepine agonists bretazenil and ZG-63 (both at 40 mg/kg, IP), and a novel broad-spectrum anticonvulsant loreclezole (40 mg/kg, IP) in both ANT and AT rats. In contrast, diazepam (10 mg/kg, IP) impaired performance of the ANT but not AT animals. These data, supported by results from brain regional autoradiography of [3H]Ro15-4513 and membrane binding of [3H]ZG-63 and [35S]TBPS as influenced by these ligands, strongly suggest that only ligands with full agonist actions on mutant (ANT) but not wild-type (AT) alpha 6-containing GABAA receptors are able to produce motor impairment in the ANT rats.  相似文献   

10.
In the present study, rundown of gamma-aminobutyric acid (GABA)-activated Cl- channels was studied in recombinant GABAA receptors stably expressed in human embryonic kidney cells (HEK 293), with conventional whole-cell and amphotericin B-perforated patch recording. When [ATP]i was lowered to 1 mM and resting [Ca++]i was buffered to a relatively high level, the response of alpha 3 beta 2 gamma 2 GABAA receptors to relatively low [GABA] (up to 50 microM) did not show rundown in the whole-cell configuration. However, high [GABA] (greater than 200 microM) induced significant rundown, which was observed by decreases in both the maximum GABA-induced current and GABA EC50. Rundown was prevented completely with a solution containing 4 mM Mg(++)-ATP and low resting [Ca++]i, or during perforated patch recording. The magnitude of rundown was comparable in alpha 1 beta 2 gamma 2 and beta 2 gamma 2 receptors. Neither stimulation nor inhibition of protein kinase A or protein kinase C had a significant effect on rundown. However, sodium metavanadate, an inhibitor of protein tyrosine phosphatase, significantly reduced rundown. In addition, inhibition of protein tyrosine kinase activity by either genistein or lavendustin A induced rundown of the GABA response. Inhibition of the Ca++/calmodulin-dependent phosphatase calcineurin with fenvalerate also prevented rundown of the response to GABA. Our results demonstrate that rundown of GABAA receptor function is concentration-dependent, due to depletion of ATP and/or unbuffered [Ca++]i, and does not depend on the presence or subtype of the alpha subunit. We propose that protein phosphorylation at a tyrosine kinase-dependent site, and a distinct unidentified site, which is dephosphorylated by calcineurin, maintains the function of GABAA receptors.  相似文献   

11.
We sought to test the hypotheses that closely related alcohols would have effects on GABAA receptor function that were not predicted by differences in lipid solubility, and that the subunit structure of the GABAA receptor would significantly affect the actions of different alcohols. Cloned subunits of human GABAA receptors were expressed in Xenopus oocytes, and two-electrode voltage-clamp recording was used to quantify the membrane current response to GABA in the presence and absence of different alcohols. 1-Butanol and 2-butanol differentially potentiated the response to 20 microM GABA in oocytes expressing the alpha 1 beta 2 gamma 2L and alpha 2 beta 2 gamma 2L receptor isoforms. In the alpha 1 beta 2 gamma 2L receptor construct, 1-butanol was more potent than 2-butanol to potentiate GABAA receptor function, but 2-butanol had a greater efficacy. In the alpha 2 beta 2 gamma 2L receptor construct, 1-butanol and 2-butanol were equipotent, but 2-butanol again had a greater efficacy. In the alpha 2 beta 2 receptor construct, both 1-butanol and 2-butanol produced large potentiations of the current response to 3 microM GABA. The efficacy for butanol potentiation of GABA responses in the absence of a gamma 2L subunit was greater, but the potency was greatly reduced. Low concentrations (20 mM) of ethanol potentiated GABA responses in the alpha 1 beta 2 gamma 2L receptor construct. Ethanol potentiation of GABAA receptor function was completely blocked by the benzodiazepine receptor partial inverse agonist RO15-4513 at a concentration (0.5 microM) that did not alter the control GABA response. In contrast, RO15-4513 did not block potentiation of GABAA receptor activity induced by n-propanol, 1-butanol, 2-butanol, 1-heptanol, or propofol (2,6-diisopropylphenol). These results suggest that alcohols have specific interactions with GABAA receptors, and that ethanol may have unique effects not shared by other longer chain alcohols.  相似文献   

12.
The effects of tyrosine kinase inhibitors which target the ATP binding site or the substrate binding site of tyrosine kinases were assessed on murine recombinant type A gamma-aminobutyric acid (GABAA) receptors expressed in Xenopus oocytes or HEK cells using two-electrode voltage clamp or patch clamp recording. Genistein inhibited in a noncompetitive manner GABA-activated currents recorded from alpha1beta1gamma2S receptor constructs by reducing the maximum normalized response from 1.83 +/- 0.04 to 0.71 +/- 0.04 and reducing the EC50 from 35.7 +/- 2.1 microM to 15.1 +/- 3.9 microM. After mutating the two "functionally active" substrate tyrosine (Y) residues in gamma2S and expressing the mutant receptor alpha1beta1gamma2S(Y365F, Y367F), genistein still noncompetitively inhibited the responses to GABA reducing the maximum current from 1. 81 +/- 0.03 to 0.26 +/- 0.01 and the EC50 from 33.1 +/- 2.3 microM to 5.8 +/- 2.2 microM. The inactive compound, daidzein, also similarly inhibited responses to GABA on these two receptor constructs. Inhibitors targeting the substrate binding site of tyrosine kinases, the tyrphostins, also inhibited both the wild-type and the tyrosine mutant GABAA receptors. Tyrphostin A25 and the inactive tyrphostin A1 reduced the maximum normalized responses for alpha1beta1gamma2S and alpha1beta1gamma2S(Y365F, Y367F) receptors by 73 and 64%, respectively. The tyrosine kinase inhibitors and their inactive controls did not display any significant voltage sensitivity to the antagonism of GABA-activated responses. Moreover, genistein or tyrphostin A25 did not affect the potentiation of responses to GABA by pentobarbitone or diazepam. Mutating the two "functionally silent" tyrosine residues, Y370 and Y372, known to be substrates for tyrosine kinases in the beta1 subunit and coexpression in the alpha1beta1(Y370F, Y372F)gamma2S(Y365F, Y367F) construct failed to affect the inhibitory action of genistein. The study concludes that tyrosine kinase inhibitors and their inactive controls can directly interact with GABAA receptors completely independent of any effects on tyrosine kinases.  相似文献   

13.
Intracellular and patch-clamp recordings have been used to characterize GABA-activated channels in axonless horizontal cells (ALHC) of the rabbit retina. In our intracellular recordings on an everted eyecup preparation, GABA depolarized the horizontal cells (HC), diminished their light response amplitude and slowed the response rise time. Glycine showed similar effects on the HC light responses. In our whole cell patch-clamp recordings on dissociated ALHC, all HCs responded to 3 microM GABA but none to glycine, even at 100 microM. Dose-response relationship for GABA gave EC50 values around 10 microM and Hill slopes of 1.3. Whole-cell current-voltage (I-V) relationships of GABA-activated currents reversed close to the predicted Cl- equilibrium potential. Partial replacement of intracellular Cl- with isothetionate shifted the GABA reversal potential to a more negative value. Muscimol (30 microM), a GABAA agonist mimicked the effect of GABA, but baclofen (30 microM), a GABAB agonist and cis-aminocaprionic acid (30 microM), a GABAC agonist did not elicit any effect on ALHC. Responses to GABA were blocked by the GABAA receptor antagonist bicuculline (10 microM) and picrotoxin (100 microM). According to our results, we conclude that ALHC express GABA receptors coupled to ion channels, and they correspond to GABAA receptor subtypes.  相似文献   

14.
Functional interactions between gamma-aminobutyric acid (GABA) and somatostatin are suggested by the presence of synaptic contacts between GABA and somatostatin neurons, colocalisation of GABA and somatostatin and reciprocal modulation of somatostatin and GABA release. Nevertheless, a direct interaction of somatostatin with the GABA(A) receptor complex has not yet been investigated. A quantitative autoradiographic technique was used to determine the ability of somatostatin to interact with the [35S]t-butylbicyclophosphothionate [35S]TBPS binding sites of the GABA(A) receptor complex: somatostatin inhibited [35S]TBPS binding with IC50 values in the micromolar range in all brain regions studied. These results demonstrate for the first time a direct interaction between somatostatin and the GABA(A) receptor complex.  相似文献   

15.
The allosteric modulation of the progesterone metabolite 3 alpha- hydroxy-5 alpha-pregnan-20-one (DHP) on [3H]Flunitrazepam and [35S]t-butylbicyclophosphorothionate (TBPS) binding was investigated on a soluble receptor preparation. Better results in the solubilization occurred by the use of the zwitterionic detergent CHAPS with the inclusion of the phospholipid asolectin: this treatment was found suitable to study the steroidal modulation on [3H]Flunitrazepam and [35S]TBPS binding. We found that DHP was able to enhance [3H]Flunitrazepam binding in the presence of Cl- ions, while [35S]TBPS binding was inhibited by DHP. Scatchard analysis of specific [35S]TBPS and [3H]Flunitrazepam binding yielded in a single straight line both in the controls and in the presence of the hormone; DHP increased the apparent affinity of [3H]Flunitrazepam binding without altering the apparent Bmax value. In the case of [35S]TBPS, DHP decreased the apparent Bmax value whereas the Kd value remained nearly the same.  相似文献   

16.
Propofol (2,6-diisopropylphenol) is an intravenous general anaesthetic which can directly activate and positively modulate the GABAA receptor. The effects of propofol on human recombinant GABAA receptors were studied in Xenopus oocytes expressing either alpha1beta2, alpha1beta2gamma2L, or alpha2beta2gamma2L receptor isoforms. In all receptor isoforms tested, propofol was able to potentiate the GABA-activated currents in a concentration-dependent manner. Although propofol potentiated both alpha1beta2 and alpha1beta2gamma2L receptor isoforms with equal affinity, the efficacy of propofol potentiation was markedly greater in the alpha1beta2 receptor isoform. In contrast, potentiation of the alpha2beta2gamma2L receptor isoform by propofol occurred with higher affinity and lower efficacy than in the alpha1beta2gamma2L receptor isoform. Propofol directly activated all three receptor isoforms in a concentration dependent manner. Addition of the gamma2L subunit subtype to the alpha1beta2 receptor isoform decreased receptor sensitivity to direct activation by propofol. Replacement of the alpha1-subunit subtype with the alpha2-subunit subtype increased receptor sensitivity to propofol's direct effects. These results suggest that the alpha-and gamma2L-subunit subtypes each have the ability to influence both the direct and modulatory actions of propofol on GABAA receptor function.  相似文献   

17.
Two flavones, 4',5,7-trihydroxy-6-methoxy flavone (dinatin) and 4',5-dihydroxy-6, 7-dimethoxy flavone (skrofulein), were extracted from Artemisia herba alba L. Dinatin and skrofulein inhibited the binding of [methyl-3H]diazepam to rat brain membranes in vitro with IC50 of 1.3 and 23 mumol.L-1, respectively. The GABA-ratios (the ratio of IC50 values in the absence/presence of GABA in the binding assay) were 1.1 and 1.2 for dinatin and skrofulein, respectively. Both flavones induced a slight increase in [35S] TBPS binding. The data suggest that the flavones are antagonists or partial agonists of benzodiazepine receptors.  相似文献   

18.
Native gamma-aminobutyric acid type A (GABAA) receptors containing different beta-subunit variants were identified immunobiochemically with antisera recognizing selectively the beta 1-, beta 2-, or beta 3-subunit. As determined by immunoprecipitation, the beta 2-subunit was present in 55-60% of GABAA receptors, while only minor receptor populations contained the beta 1-subunit (16-18%) or the beta 3-subunit (19-25%). Since the sum of these values amounts to about 100%, it is concluded that GABAA receptors largely contain only a single type of beta-subunit. Pharmacologically, receptors containing the beta 2-subunit differed from those containing the beta 1- or beta 3-subunit by their differential affinities for benzodiazepine receptor ligands. The subunit composition was analyzed biochemically in receptors immunoprecipitated by the beta 2-subunit antiserum. The beta 2-subunit was preferentially associated with the alpha 1-subunit (rarely with the alpha 2-subunit) and with the gamma 2-subunit; negligible or no immunoreactivity was detected for the alpha 3-, alpha 5-, or beta 1-subunit. A stringent co-expression of alpha 1- and beta 2-subunits was confirmed by double immunofluorescence staining on the cellular level. Neurons expressing the beta 3-subunit immunoreactivity were largely double labeled by the alpha 2-subunit antiserum. Thus, the subunit combinations alpha 1 beta 2 gamma 2 and alpha 2 beta 3 gamma 2 represent two main GABAA receptor subtypes, which together amount to 75-85% of the diazepam-sensitive GABAA receptors.  相似文献   

19.
We characterized modulation of the gamma-aminobutyric acid (GABA)-evoked responses of the diazepam-insensitive alpha 4 beta 2 gamma2 and alpha 6 beta 2 gamma 2 recombinant GABAA receptors. The partial agonist bretazenil potentiated the responses of both receptors with similar dose dependence but with a higher maximal enhancement at the alpha 4 beta 2 gamma 2 receptor. The bretazenil-induced potentiation was reduced by the benzodiazepine antagonist flumazenil. At a high concentration (10 microM), flumazenil was a weak potentiator of the GABA response. The partial agonist imidazenil was inactive. The imidazobenzodiazepine inverse agonist Ro 15-4513, which is known to bind with high affinity to the alpha 6 beta 2 gamma 2 receptor, potentiated the GABA responses of the alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2 receptor subtypes with similar dose dependence over the concentration range of 0.1-10 microM. Methyl-6, 7-dimethoxy-4-ethyl-beta-carboline, a beta-carboline inverse agonist, had a similar potentiating effect when tested at a concentration of 10 microM. The alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2 receptor-mediated currents had equal sensitivities to furosemide and Zn2+ ions, both of which reduced the GABA-evoked responses. The alpha 6 beta 2 gamma 2 receptor but not the alpha 4 beta 2 gamma 2 receptor exhibited a low level of spontaneous activity in the absence of GABA; this resting current could be directly potentiated by Ro 15-4513, methyl-6,7-dimethoxy-4-ethyl-beta-carboline, bretazenil and flumazenil and was blocked by picrotoxin. Thus, although the alpha 4 beta 2 gamma 2 receptors are insensitive to benzodiazepine binding site full agonists, such as diazepam, they can be modulated by certain ligands acting as partial and inverse agonists at diazepam-sensitive receptors and thereby contribute to the respective pharmacological profiles.  相似文献   

20.
1. The radiolabelled bicyclic dinitrile, [3H]-3,3-bis-trifluoromethyl-bicyclo[2.2.1]heptane-2,2-dicarbonitrile ([3H]-BIDN), exhibited, specific binding of high affinity to membranes of the southern corn rootworm (Diabrotica undecimpunctata howardi) and other insects. A variety of gamma-aminobutyric acid (GABA) receptor convulsants, including the insecticides heptachlor (IC50, 35 +/- 3 nM) and dieldrin (IC50, 93 +/- 7 nM), displaced [3H]-BIDN from rootworm membranes. When tested at 100 microM, 1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]oct ane(EBOB), 4-t-butyl-2,6,7-trioxa-1-phosphabicy-clo[2.2.2]octane-1-thio ne (TBPS), 1-phenyl-4-t-butyl-2,6,7-trioxabicyclo[2.2.2]octane (TBOB) and picrotoxin failed to displace 50% of [3H]-BIDN binding to rootworm membranes indicating that the bicyclic dinitrile radioligand probes a site distinct from those identified by other convulsant radioligands. 2. Dissociation studies showed that dieldrin, ketoendrin, toxaphene, heptachlor epoxide and alpha and beta endosulphan displace bound [3H]-BIDN from rootworm membranes by a competitive mechanism. 3. Rat brain membranes were also shown to possess a population of saturable, specific [3H]-BIDN binding sites, though of lower affinity than in rootworm and with a different pharmacological profile. Of the insecticidal GABAergic convulsants that displaced [3H]-BIDN from rootworm, cockroach (Periplaneta americana) and rat brain membranes, many were more effective in rootworm. 4. Functional GABA-gated chloride channels of rootworm nervous system and of cockroach nerve and muscle were blocked by BIDN, whereas cockroach neuronal GABA(B) receptors were unaffected. 5. Expression in Xenopus oocytes of either rat brain mRNA, or cDNA-derived RNA encoding a GABA receptor subunit (Rdl) that is expressed widely in the nervous system of Drosophila melanogaster resulted in functional, homo-oligomeric GABA receptors that were blocked by BIDN. Thus, BIDN probes a novel site on GABA-gated Cl- channels to which a number of insecticidally-active molecules bind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号