首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes a system for visual object recognition based on mobile augmented reality gear. The user can train the system to the recognition of objects online using advanced methods of interaction with mobile systems: Hand gestures and speech input control “virtual menus,” which are displayed as overlays within the camera image. Here we focus on the underlying neural recognition system, which implements the key requirement of an online trainable system—fast adaptation to novel object data. The neural three-stage architecture can be adapted in two modes: In a fast training mode (FT), only the last stage is adapted, whereas complete training (CT) rebuilds the system from scratch. Using FT, online acquired views can be added at once to the classifier, the system being operational after a delay of less than a second, though still with reduced classification performance. In parallel, a new classifier is trained (CT) and loaded to the system when ready. The text was submitted by the authors in English. Gunther Heidemann was born in 1966. He studied physics at the Universities of Karlsruhe and Münster and received his PhD (Eng.) from Bielefeld University in 1998. He is currently working within the collaborative research project “Hybrid Knowledge Representation” of the SFB 360 at Bielefeld University. His fields of research are mainly computer vision, robotics, neural networks, data mining, bonification, and hybrid systems. Holger Bekel was born in 1970. He received his BS degree from the University of Bielefeld, Germany, in 1997. In 2002 he received a diploma in Computer Science from the University of Bielefeld. He is currently pursuing a PhD program in Computer Science at the University of Bielefeld, working within the Neuroinformatics Group (AG Neuroinformatik) in the project VAMPIRE (Visual Active Memory Processes and Interactive Retrieval). His fields of research are active vision and data mining. Ingo Bax was born in 1976. He received a diploma in Computer Science from the University of Bielefeld in 2002. He is currently pursuing a PhD program in Computer Science at the Neuroinformatics Group of the University of Bielefeld, working within the VAMPIRE project. His fields of interest are cognitive computer vision and pattern recognition. Helge J. Ritter was born 1958. He studied physics and mathematics at the Universities of Bayreuth, Heidelberg and Munich. After a PhD in physics at Technical University of Munich in 1988, he visited the Laboratory of Computer Science at Helsinki University of Technology and the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign. Since 1990 he has headed the Neuroinformatics Group at the Faculty of Technology, Bielefeld University. His main interests are principles of neural computation and their application to building intelligent systems. In 1999, she was awarded the SEL Alcatel Research Prize, and in 2001, the Leibniz Prize of the German Research Foundation DFG.  相似文献   

2.
To address the two most critical issues in P2P file-sharing systems: efficient information discovery and authentic data acquisition, we propose a Gnutella-like file-sharing protocol termed Adaptive Gnutella Protocol (AGP) that not only improves the querying efficiency in a P2P network but also enhances the quality of search results at the same time. The reputation scheme in the proposed AGP evaluates the credibility of peers based on their contributions to P2P services and subsequently clusters nodes together according to their reputation and shared content, essentially transforming the P2P overlay network into a topology with collaborative and reputed nodes as its core. By detecting malicious peers as well as free-riders and eventually pushing them to the edge of the overlay network, our AGP propagates search queries mainly within the core of the topology, accelerating the information discovery process. Furthermore, the clustering of nodes based on authentic and similar content in our AGP also improves the quality of search results. We have implemented the AGP with the PeerSim simulation engine and conducted thorough experiments on diverse network topologies and various mixtures of honest/dishonest nodes to demonstrate improvements in topology transformation, query efficiency, and search quality by our AGP.
Alex DelisEmail:

Ioannis Pogkas   received his BS in Computer Science in 2007 and is currently pursuing postgraduate studies at the Department of Informatics and Telecommunications of the Univesrity of Athens. His research interests focus on search, reputation andtopology adaptation mechanisms in peer-to-peer networks. He is also interested in embedded and operating systems. Vassil Kriakov   received his B.S. and M.S. from Polytechnic University in 2001 and is now completing his doctoral studies at the Polytechnic Institute of New York University (NYU-Poly). His PhD research has been partially sponsored by a US Department of Education GAANN Graduate Fellowship. His research interests include distributed spatio-temporal data indexing, correlations in high-frequency data streams, and data management in grid and peer-to-peer networks. Zhongqiang Chen   is a senior software engineer at Yahoo! He holds a PhD in Computer Science and MS degrees in both Computer Science and Electrical Engineering all from Polytechnic University in Brooklyn, NY. He is a Computer Engineering MS and BS graduate of Tsinghua University, Beijing, P.R. China. He is interested in network security, information retrieval, and distributed computing and is the recipient of the 2004 Wilkes Award for outstanding paper contribution in The Computer Journal. Alex Delis   is a Professor of Computer Science at the University of Athens. He holds a PhD and an MS from the University of Maryland College Park as well as a Diploma in Computer Engineering from the University of Patras. His research interests are in distributed computing systems, networked information systems, databases and information security. He is a member of IEEE Computer Society, the ACM and the Technical Chamber of Greece.  相似文献   

3.
Data Quality is a critical issue in today’s interconnected society. Advances in technology are making the use of the Internet an ever-growing phenomenon and we are witnessing the creation of a great variety of applications such as Web Portals. These applications are important data sources and/or means of accessing information which many people use to make decisions or to carry out tasks. Quality is a very important factor in any software product and also in data. As quality is a wide concept, quality models are usually used to assess the quality of a software product. From the software point of view there is a widely accepted standard proposed by ISO/IEC (the ISO/IEC 9126) which proposes a quality model for software products. However, until now a similar proposal for data quality has not existed. Although we have found some proposals of data quality models, some of them working as “de facto” standards, none of them focus specifically on web portal data quality and the user’s perspective. In this paper, we propose a set of 33 attributes which are relevant for portal data quality. These have been obtained from a revision of literature and a validation process carried out by means of a survey. Although these attributes do not conform to a usable model, we think that it might be considered as a good starting point for constructing one.
Mario PiattiniEmail:

Angélica Caro   has a PhD in Computer Science and is Assistant Professor at the Department of Computer Science and Information Technologies of the Bio Bio University in Chillán, Chile. Her research interests include: Data quality, Web portals, data quality in Web portals and data quality measures. She is author of papers in national and international conferences on this subject. Coral Calero    has a PhD in Computer Science and is Associate Professor at the Escuela Superior de Informatica of the Castilla-La Mancha University in Ciudad Real. She is a member of the Alarcos Research Group, in the same University, specialized in Information Systems, Databases and Software Engineering. Her research interests include: advanced databases design, database quality, software metrics, database metrics. She is author of papers in national and international conferences on this subject. She has published in Information Systems Journal, Software Quality Journal, Information and Software Technology Journal and SIGMOD Record Journal. She has organized the web services quality workshop (WISE Conference, Rome 2003) and Database Maintenance and Reengineering workshop (ICSM Conference, Montreal 2002). Ismael Caballero    has an MSc and PhD in Computer Science from the Escuela Superior de Informática of the Castilla-La Mancha University in Ciudad Real. He actually works as an assistant professor in the Department of Information Systems and Technologies at the University of Castilla-La Mancha, and he has also been working in the R&D Department of Indra Sistemas since 2006. His research interests are focused on information quality management, information quality in SOA, and Global Software Development. Mario Piattini    has an MSc and a PhD in Computer Science (Politechnical University of Madrid) and a MSc in Psychology (UNED.). He is also a Certified Information System Auditor and a Certified information System Manager by ISACA (Information System Audit and Control Association) as well as a Full Professor in the Department of Computer Science at the University of Castilla-La Mancha, in Ciudad Real, Spain. Furthermore, he is the author of several books and papers on databases, software engineering and information systems. He is a coeditor of several international books: “Advanced Databases Technology and Design”, 2000, Artech House, UK; "Information and database quality”, 2002, Kluwer Academic Publishers, Norwell, USA; “Component-based software quality: methods and techniques”, 2004, Springer, Germany; “Conceptual Software Metrics”, Imperial College Press, UK, 2005. He leads the ALARCOS research group of the Department of Computer Science at the University of Castilla-La Mancha, in Ciudad Real, Spain. His research interests are: advanced databases, database quality, software metrics, security and audit, software maintenance.   相似文献   

4.
Signal processing algorithms often have to be modified significantly for implementation in hardware. Continuous real-time image processing at high speed is a particularly challenging task. In this paper a hardware-software codesign is applied to a stereophotogrammetric system. To calculate the depth map, an optimized algorithm is implemented as a hierarchical-parallel hardware solution. By subdividing distances to objects and selecting them sequentially, we can apply 3D scanning and ranging over large distances. We designed processor-based object clustering and tracking functions. We can detect objects utilizing density distributions of disparities in the depth map (disparity histogram). Motion parameters of detected objects are stabilized by Kalman filters. The text was submitted by the authors in English. Michael Tornow was born in Magdeburg, Germany, in 1977. He received his diploma engineer degree (Dipl.-Ing.) in electrical engineering at the University of Magdeburg, Germany, in 2002. He is currently working on a PhD thesis focusing on hardware adapted image processing and vision based driver assistance. Robert W. Kuhn received his diploma engineer degree (Dipl.-Ing.) in geodesy at the Technical University of Berlin, Germany, in 2000. His current work on a PhD thesis focuses on calibration and image processing. Jens Kaszubiak was born in Blankenburg, Germany, in 1977. He received his diploma engineer degree (Dipl.-Ing.) in electrical engineering at the University of Magdeburg, Germany, in 2002. His current research work focuses on vision-based driver assistance and hardware-software codesign. Bernd Michaelis was born in Magdeburg, Germany, in 1947. He received a Masters Degree in Electronic Engineering from the Technische Hochschule, Magdeburg, in 1971 and his first PhD in 1974. Between 1974 and 1980 he worked at the Technische Hochschule, Magdeburg, and was granted a second doctoral degree in 1980. In 1993 he became Professor of Technical Computer Science at the Otto-von-Guericke University, Magdeburg. His research work concentrates on the field of image processing, artificial neural networks, pattern recognition, processor architectures, and microcomputers. Professor Michaelis is the author of more than 150 papers. Gerald Krell was born in Magdeburg, Germany, in 1964. He earned his diploma in electrical engineering in 1990 and his doctorate in 1995 at Otto-von-Guericke University of Magdeburg. Since then he has been a research assistant. His primary research interest is focused on digital image processing and compression, electronic hardware development, and artificial neural networks.  相似文献   

5.
Providing real-time and QoS support to stream processing applications running on top of large-scale overlays is challenging due to the inherent heterogeneity and resource limitations of the nodes and the multiple QoS demands of the applications that must concurrently be met. In this paper we propose an integrated adaptive component composition and load balancing mechanism that (1) allows the composition of distributed stream processing applications on the fly across a large-scale system, while satisfying their QoS demands and distributing the load fairly on the resources, and (2) adapts dynamically to changes in the resource utilization or the QoS requirements of the applications. Our extensive experimental results using both simulations as well as a prototype deployment illustrate the efficiency, performance and scalability of our approach.
Vana Kalogeraki (Corresponding author)Email:

Thomas Repantis   is a PhD candidate at the Computer Science and Engineering Department of the University of California, Riverside. His research interests lie in the area of distributed systems, distributed stream processing systems, middleware, peer-to-peer systems, pervasive and cluster computing. He holds an MSc from the University of California, Riverside and a Diploma from the University of Patras, Greece, and has interned with IBM Research, Intel Research and Hewlett-Packard. Yannis Drougas   is currently a Ph.D. student in the Department of Computer Science and Engineering at University of California, Riverside. He received the Diploma in Electrical and Computer Engineering from Technical University of Crete, Greece in 2003. His research interests include peer-to-peer systems, real-time systems, stream processing systems, resource management and sensor networks. Vana Kalogeraki   is currently an Associate Professor in the Department of Computer Science and Engineering at the University of California, Riverside. She received the Ph.D. in Electrical and Computer Engineering from the University of California, Santa Barbara, in 2000. Previously she was an Assistant Professor in the Department of Computer Science and Engineering at the University of California, Riverside (2002–2008) and held a Research Scientist Position at Hewlett Packard Labs in Palo Alto, CA (2001–2002). Her research interests include distributed systems, peer-to-peer systems, real-time systems, resource management and sensor networks.   相似文献   

6.
Data warehouses are powerful tools for making better and faster decisions in organizations where information is an asset of primary importance. Due to the complexity of data warehouses, metrics and procedures are required to continuously assure their quality. This article describes an empirical study and a replication aimed at investigating the use of structural metrics as indicators of the understandability, and by extension, the cognitive complexity of data warehouse schemas. More specifically, a four-step analysis is conducted: (1) check if individually and collectively, the considered metrics can be correlated with schema understandability using classical statistical techniques, (2) evaluate whether understandability can be predicted by case similarity using the case-based reasoning technique, (3) determine, for each level of understandability, the subsets of metrics that are important by means of a classification technique, and assess, by means of a probabilistic technique, the degree of participation of each metric in the understandability prediction. The results obtained show that although a linear model is a good approximation of the relation between structure and understandability, the associated coefficients are not significant enough. Additionally, classification analyses reveal respectively that prediction can be achieved by considering structure similarity, that extracted classification rules can be used to estimate the magnitude of understandability, and that some metrics such as the number of fact tables have more impact than others.
Mario PiattiniEmail:

Manuel Serrano   is MSc and PhD in Computer Science by the University of Castilla – La Mancha. Assistant Professor at the Escuela Superior de Informática of the Castilla – La Mancha University in Ciudad Real. He is a member of the Alarcos Research Group, in the same University, specialized in Information Systems, Databases and Software Engineering. His research interests are: DataWarehouses Quality & Metrics, Software Quality. His e-mail is Manuel.Serrano@uclm.es Coral Calero   is MSc and PhD in Computer Science. Associate Professor at the Escuela Superior de Informática of the Castilla – La Mancha University in Ciudad Real. She is a member of the Alarcos Research Group, in the same University, specialized in Information Systems, Databases and Software Engineering. Her research interests are: advanced databases design, database/datawarehouse quality, web/portal quality, software metrics and empirical software engineering. She is author of articles and papers in national and international conferences on these subjects. Her e-mail is: Coral.Calero@uclm.es Houari Sahraoui   received a Ph.D. in Computer Science from Pierre Marie Curie University, Paris in 1995. He is currently an associate professor at the Department of Computer Science and Operational Research, University of Montreal where he is leading the software engineering group (GEODES). His research interests include object-oriented software quality, software visualization and software reverse and re-engineering. He has published more than 80 papers in conferences, workshops and journals and edited two books. He has served as program committee member in several major conferences and as member of the editorial boards of two journals. He was the general chair of IEEE Automated Software Engineering Conference in 2003. His e-mail is sahraouh@iro.umontreal.ca Mario Piattini   is MSc and PhD in Computer Science by the Polytechnic University of Madrid. Certified Information System Auditor by ISACA (Information System Audit and Control Association). Full Professor at the Escuela Superior de Informática of the Castilla – La Mancha University. Author of several books and papers on databases, software engineering and information systems. He leads the ALARCOS research group of the Department of Computer Science at the University of Castilla – La Mancha, in Ciudad Real, Spain. His research interests are: advanced database design, database quality, software metrics, object oriented metrics, software maintenance. His e-mail address is Mario.Piattini@uclm.es   相似文献   

7.
Advances in GML for Geospatial Applications   总被引:1,自引:0,他引:1  
This paper presents a study of Geography Markup Language (GML), the issues that arise from using GML for spatial applications, including storage, parsing, querying and visualization, as well as the use of GML for mobile devices and web services. GML is a modeling language developed by the Open Geospatial Consortium (OGC) as a medium of uniform geographic data storage and exchange among diverse applications. Many new XML-based languages are being developed as open standards in various areas of application. It would be beneficial to integrate such languages with GML during the developmental stages, taking full advantage of a non-proprietary universal standard. As GML is a relatively new language still in development, data processing techniques need to be refined further in order for GML to become a more efficient medium for geospatial applications.
Yufeng KouEmail:

Chang-Tien(C.T.) Lu   received the BS degree in Computer Science and Engineering from the Tatung Institute of Technology, Taipei, Taiwan, in 1991, the MS degree in Computer Science from the Georgia Institute of Technology, Atlanta, GA, in 1996, and the Ph.D. degree in Computer Science from the University of Minnesota, Minneapolis, MN, in 2001. He is currently an assistant professor in the Department of Computer Science at Virginia Polytechnic Institute and State University, and is the founding director of the Spatial Data Management Laboratory. His research interests include spatial database, data mining, data warehousing, geographic information systems, and intelligent transportation systems. Dr. Lu is also affiliated with Virginia Tech Civil and Environmental Engineering Department, Center for Geospatial Information Technology, and Virginia Tech Transportation Institute. Raimundo Dos Santos   received a Bachelor’s Degree in Computer Science from the University of South Florida. He is currently a PhD. candidate in the Department of Computer Science at Virginia Polytechnic Institute and State University. His research focuses on Spatial Data Management, including retrieval, exchange, and processing of information for Geographic Information Systems and Location-Based Services. Other interests include Geography Markup Language (GML), and data visualization. Lakshmi N Sripada   received an MS in Information Systems from Virginia Polytechnic and State University in 2004. Her research interests include Data Visualization, GML, and Geographic Information Systems. Yufeng Kou   received a BS degree in Computer Science from Northwestern Polytechnic University, XiAn, China, in 1996, a MS degree in Computer Science from Beijing University of Post and Telecommunications in 1999. He is a PhD candidate in Computer Science Department, Virginia Polytechnic Institute and State University. His research interests include spatial data analysis, data mining, data warehousing, and Geographic Information Systems.   相似文献   

8.
In the field of computer vision and pattern recognition, data processing and data analysis tasks are often implemented as a consecutive or parallel application of more-or-less complex operations. In the following we will present DocXS, a computing environment for the design and the distributed and parallel execution of such tasks. Algorithms can be programmed using an Eclipse-based user interface, and the resulting Matlab and Java operators can be visually connected to graphs representing complex data processing workflows. DocXS is platform independent due to its implementation in Java, is freely available for noncommercial research, and can be installed on standard office computers. One advantage of DocXS is that it automatically takes care about the task execution and does not require its users to care about code distribution or parallelization. Experiments with DocXS show that it scales very well with only a small overhead. The text was submitted by the authors in English. Steffen Wachenfeld received B.Sc. and M.Sc. (honors) degrees in Information Systems in 2003 and 2005 from the University of Muenster, Germany, and an M.Sc. (honors) degree in Computer Science in 2003 from the University of Muenster. He is currently a research fellow and PhD student in the Computer Science at the Dept. of Computer Science, University of Muenster. His research interests include low resolution text recognition, computer vision on mobile devices, and systems/system architectures for computer vision and image analysis. He is author or coauthor of more than ten scientific papers and a member of IAPR. Tobias Lohe, M.Sc. degree in Computer Science in 2007 from the University of Muenster, Germany, is currently a research associate and PhD student in Computer Science at the Institute for Robotics and Cognitive Systems, University of Luebeck, Germany. His research interests include medical imaging, signal processing, and robotics for minimally invasive surgery. Michael Fieseler is currently a student of Computer Science at the University of Muenster, Germany. He has participated in research in the field of computer vision and medical imaging. Currently he is working on his Master thesis on depth-based image rendering (DBIR). Xiaoyi Jiang studied Computer Science at Peking University, China, and received his PhD and Venia Docendi (Habilitation) degree in Computer Science from the University of Bern, Switzerland. In 2002 he became an associate professor at the Technical University of Berlin, Germany. Since October 2002 he has been a full professor at the University of Münster, Germany. He has coauthored and coedited two books published by Springer and has served as the co-guest-editor of two special issues in international journals. Currently, he is the Coeditor-in-Chief of the International Journal of Pattern Recognition and Artificial Intelligence. In addition he also serves on the editorial advisory board of the International Journal of Neural Systems and the editorial board of IEEE Transactions on Systems, Man, and Cybernetics—Part B, the International Journal of Image and Graphics, Electronic Letters on Computer Vision and Image Analysis, and Pattern Recognition. His research interests include medical image analysis, vision-based man-machine interface, 3D image analysis, structural pattern recognition, and mobile multimedia. He is a member of IEEE and a Fellow of IAPR.  相似文献   

9.
When conducting a systematic literature review, researchers usually determine the relevance of primary studies on the basis of the title and abstract. However, experience indicates that the abstracts for many software engineering papers are of too poor a quality to be used for this purpose. A solution adopted in other domains is to employ structured abstracts to improve the quality of information provided. This study consists of a formal experiment to investigate whether structured abstracts are more complete and easier to understand than non-structured abstracts for papers that describe software engineering experiments. We constructed structured versions of the abstracts for a random selection of 25 papers describing software engineering experiments. The 64 participants were each presented with one abstract in its original unstructured form and one in a structured form, and for each one were asked to assess its clarity (measured on a scale of 1 to 10) and completeness (measured with a questionnaire that used 18 items). Based on a regression analysis that adjusted for participant, abstract, type of abstract seen first, knowledge of structured abstracts, software engineering role, and preference for conventional or structured abstracts, the use of structured abstracts increased the completeness score by 6.65 (SE 0.37, p < 0.001) and the clarity score by 2.98 (SE 0.23, p < 0.001). 57 participants reported their preferences regarding structured abstracts: 13 (23%) had no preference; 40 (70%) preferred structured abstracts; four preferred conventional abstracts. Many conventional software engineering abstracts omit important information. Our study is consistent with studies from other disciplines and confirms that structured abstracts can improve both information content and readability. Although care must be taken to develop appropriate structures for different types of article, we recommend that Software Engineering journals and conferences adopt structured abstracts.
Stephen G. LinkmanEmail:

David Budgen   is a Professor of Software Engineering and Chairman of the Department of Computer Science at Durham University in the UK. His research interests include software design, design environments, healthcare computing and evidence-based software engineering. He was awarded a BSc(Hons) in Physics and a PhD in Theoretical Physics from Durham University, following which he worked as a research scientist for the Admiralty and then held academic positions at Stirling University and Keele University before moving to his present post at Durham University in 2005. He is a member of the IEEE Computer Society, the ACM and the Institution of Engineering & Technology (IET). Barbara A. Kitchenham   is Professor of Quantitative Software Engineering at Keele University in the UK. From 2004–2007, she was a Senior Principal Researcher at National ICT Australia. She has worked in software engineering for nearly 30 years both in industry and academia. Her main research interest is software measurement and its application to project management, quality control, risk management and evaluation of software technologies. Her most recent research has focused on the application of evidence-based practice to software engineering. She is a Chartered Mathematician and Fellow of the Institute of Mathematics and Its Applications, a Fellow of the Royal Statistical Society and a member of the IEEE Computer Society. Stuart M. Charters   is a Lecturer of Software and Information Technology in the Applied Computing Group, Lincoln University, NZ. Stuart received his BSc(Hons) in Computer Science and PhD in Computer Science from Durham University UK. His research interests include evidence-based software engineering, software visualisation and grid computing. Mark Turner   is a Lecturer in the School of Computing and Mathematics at Keele University, UK. His research interests include evidence-based software engineering, service-based software engineering and dynamic access control. Turner received a PhD in computer science from Keele University. He is a member of the IEEE Computer Society and the British Computer Society. Pearl Brereton   is Professor of Software Engineering in the School of Computing and Mathematics at Keele University. She was awarded a BSc degree (first class honours) in Applied Mathematics and Computer Science from Sheffield University and a PhD in Computer Science from Keele University. Her research focuses on evidence-based software engineering and service-oriented systems. She is a member of the IEEE Computer Society, the ACM, and the British Computer Society. Stephen G. Linkman   is a Senior Lecturer in the School of Computing and Mathematics at Keele University and holds an MSc from the University of Leicester. His main research interests lie in the fields of software metrics and their application to project management, quality control, risk management and the evaluation of software systems and process. He is a visiting Professor at the University of Sao Paulo in Brazil.   相似文献   

10.
In software testing, developing effective debugging strategies is important to guarantee the reliability of software under testing. A heuristic technique is to cause failure and therefore expose faults. Based on this approach mutation testing has been found very useful technique in detecting faults. However, it suffers from two problems with successfully testing programs: (1) requires extensive computing resources and (2) puts heavy demand on human resources. Later, empirical observations suggest that critical slicing based on Statement Deletion (Sdl) mutation operator has been found the most effective technique in reducing effort and the required computing resources in locating the program faults. The second problem of mutation testing may be solved by automating the program testing with the help of software tools. Our study focuses on determining the effectiveness of the critical slicing technique with the help of the Mothra Mutation Testing System in detecting program faults. This paper presents the results showing the performance of Mothra Mutation Testing System through conducting critical slicing testing on a selected suite of programs. Zuhoor Abdullah Al-Khanjari is an assistant professor in the Computer Science Department at Sultan Qaboos University, Sultanate of Oman. She received her BSc in mathematics and computing from Sultan Qaboos University, MSc and PhD in Computer Science (Software Engineering) from the University of Liverpool, UK. Her research interests include software testing, database management, e-learning, human-computer interaction, programming languages, intelligent search engines, and web data mining and development. ~Currently, she is the coordinator of the software engineering research group in the Department of Computer Science, College of Science, Sultan Qaboos University. She is also coordinating a program to develop e-learning based undergraduate teaching in the Department of Computer Science. Currently she is holding the position of assistant dean for postgraduate studies and research in the College of Science, Sultan Qaboos University, Sultanate of Oman. Martin Woodward is a Senior Fellow in the Computer Science Department at the University of Liverpool in the UK. After obtaining BSc and Ph.D. degrees in mathematics from the University of Nottingham, he was employed by the University of Oxford as a Research Assistant on secondment to the UK Atomic Energy Authority at the Culham Laboratory. He has been at the University of Liverpool for many years and initially worked on the so-called ‘Testbed’ project, helping to develop automated tools for software testing which are now marketed successfully by a commercial organisation. His research interests include software testing techniques, the relationship between formal methods and testing, and software visualisation. He has served as Editor of the journal ‘Software Testing, Verification and Reliability’ for the past thirteen years. Haider Ramadhan is an associate professor in the Computer Science Department at Sultan Qaboos University. He received his BS and MS in Computer Science from University of North Carolina, and the PhD in Computer Science and AI from Sussex University. His research interests include visualization of software, systems, and process, system engineering, human-computer interaction, intelligent search engines, and Web data mining and development. Currently, he is the chairman of the Computer Science Department, College of Science, Sultan Qaboos University, Sultanate of Oman. Swamy Kutti (N. S. Kutti) is an associate professor in the Computer Science Department at Sultan Qaboos University. He received his B.E. in Electronics Engineering from the University of Madras, M.E. in Communication Engineering from Indian Institute of Science (Bangalore), and the MSc in Computer Science from Monash University (Australia) and PhD in Computer Science from Deakin University (Australia). His research interests include Real-Time Programming, Programming Languages, Program Testing and Verification, eLearning, and Distributed Operating Systems.  相似文献   

11.
12.
Robust detection and ordering of ellipses on a calibration pattern   总被引:1,自引:0,他引:1  
The aim of this work is to accurately estimate from an image the parameters of some ellipses and their relative positions with respect to a given pattern. The process is characterized because it is fully automated and is robust against image noise and occlusions. We have built a calibrator pattern with two planes each containing several ordered circles in known 3D positions. Our method is able to estimate the position of every ellipse and to put them into correspondence with the original calibrator circles. The text was submitted by the authors in English. Luis álvarez received an MS in applied mathematics in 1985 and a PhD in mathematics in 1988, both from CompIntense University (Madrid, Spain). Between 1991 and 1992, he worked as a postdoctoral researcher at CEREMADE, Université Paris IX—Dauphine (France). Currently, he is with the Computer Science Department of the University of Las Palmas de Gran Canaria. His research interests are computer vision and partial differential equations. He is the scientific leader of computer vision group of the University of Las Palmas named AMI. Agustín Salgado received an MS in computer science in from the University of Las Palmas de Gran Canaria (Las Palmas, Spain). Currently, he holds a grant from the Computer Science Department of the University of Las Palmas de Gran Canaria, where he is working on his doctoral thesis under the direction of Javier Sánchez. Javier Sánchez received an MS in computer science in 1997 and a PhD in computer science in 2001, both from the University of Las Palmas de Gran Canaria (Las Palmas, Spain). Between 1997 and 1998, he attended some courses of the DBA 127 “Informatique: Systemes Intelligentes” at the Université Paris IX—Dauphine (France). Currently, he is a lecturer at the Computer Science Department of the University of Las Palmas de Gran Canaria. His research interests are computer vision and partial differential equations, specially applied to stereoscopic vision and optical flow estimation.  相似文献   

13.
Retrieval of Spatial Join Pattern Instances from Sensor Networks   总被引:1,自引:1,他引:0  
We study the continuous evaluation of spatial join queries and extensions thereof, defined by interesting combinations of sensor readings (events) that co-occur in a spatial neighborhood. An example of such a pattern is “a high temperature reading in the vicinity of at least four high-pressure readings”. We devise protocols for ‘in-network’ evaluation of this class of queries, aiming at the minimization of power consumption. In addition, we develop cost models that suggest the appropriateness of each protocol, based on various factors, including selectivity of query elements, energy requirements for sensing, and network topology. Finally, we experimentally compare the effectiveness of the proposed solutions on an experimental platform that emulates real sensor networks.
Spiridon BakirasEmail:

Man Lung Yiu   received the Bachelor Degree in Computer Engineering and the Ph.D. Degree in Computer Science from the University of Hong Kong in 2002 and 2006 respectively. He is currently an assistant professor at Department of Computer Science, Aalborg University. His research interests include databases and data mining, especially advanced query processing and mining techniques for complex types of data. Nikos Mamoulis   received the diploma in Computer Engineering and Informatics in 1995 from the University of Patras, Greece, and the Ph.D. degree in computer science in 2000 from the Hong Kong University of Science and Technology. Since September 2001, he has been a faculty member of the Department of Computer Science at the University of Hong Kong, currently an associate professor. In the past, he has worked as a postdoctoral researcher at the Centrum voor Wiskunde en Informatica (CWI), The Netherlands. His research interests include complex data management, data mining, advanced indexing and query processing, and constraint satisfaction problems. He has published more than 75 articles in reputable international conferences and journals and served in the program committees of numerous database and data mining conferences. Spiridon Bakiras   received his B.S. degree (1993) in Electrical and Computer Engineering from the National Technical University of Athens, his MS degree (1994) in Telematics from the University of Surrey, and his Ph.D. degree (2000) in Electrical Engineering from the University of Southern California. Currently, he is an Assistant Professor in the Department of Mathematics and Computer Science at John Jay College, CUNY. Before that, he held teaching and research positions at the University of Hong Kong and the Hong Kong University of Science and Technology. His research interests include high-speed networks, peer-to-peer systems, mobile computing, and spatial databases. He is a member of the ACM and the IEEE.   相似文献   

14.
Similarity searching in metric spaces has a vast number of applications in several fields like multimedia databases, text retrieval, computational biology, and pattern recognition. In this context, one of the most important similarity queries is the k nearest neighbor (k-NN) search. The standard best-first k-NN algorithm uses a lower bound on the distance to prune objects during the search. Although optimal in several aspects, the disadvantage of this method is that its space requirements for the priority queue that stores unprocessed clusters can be linear in the database size. Most of the optimizations used in spatial access methods (for example, pruning using MinMaxDist) cannot be applied in metric spaces, due to the lack of geometric properties. We propose a new k-NN algorithm that uses distance estimators, aiming to reduce the storage requirements of the search algorithm. The method stays optimal, yet it can significantly prune the priority queue without altering the output of the query. Experimental results with synthetic and real datasets confirm the reduction in storage space of our proposed algorithm, showing savings of up to 80% of the original space requirement.
Gonzalo NavarroEmail:

Benjamin Bustos   is an assistant professor in the Department of Computer Science at the University of Chile. He is also a researcher at the Millennium Nucleus Center for Web Research. His research interests are similarity searching and multimedia information retrieval. He has a doctoral degree in natural sciences from the University of Konstanz, Germany. Contact him at bebustos@dcc.uchile.cl. Gonzalo Navarro   earned his PhD in Computer Science at the University of Chile in 1998, where he is now Full Professor. His research interests include similarity searching, text databases, compression, and algorithms and data structures in general. He has coauthored a book on string matching and around 200 international papers. He has (co)chaired international conferences SPIRE 2001, SCCC 2004, SPIRE 2005, SIGIR Posters 2005, IFIP TCS 2006, and ENC 2007 Scalable Pattern Recognition track; and belongs to the Editorial Board of Information Retrieval Journal. He is currently Head of the Department of Computer Science at University of Chile, and Head of the Millenium Nucleus Center for Web Research, the largest Chilean project in Computer Science research.   相似文献   

15.
Clustering is the process of partitioning a set of patterns into disjoint and homogeneous meaningful groups (clusters). A fundamental and unresolved issue in cluster analysis is to determine how many clusters are present in a given set of patterns. In this paper, we present the z-windows clustering algorithm, which aims to address this problem using a windowing technique. Extensive empirical tests that illustrate the efficiency and the accuracy of the propsoed method are presented. The text was submitted by the authors in English. Basilis Boutsinas. Received his diploma in Computer Engineering and Informatics in 1991 from the University of Patras, Greece. He also conducted studies in Electronics Engineering at the Technical Education Institute of Piraeus, Greece, and Pedagogics at the Pedagogical Academy of Lamia, Greece. He received his PhD on Knowledge Representation from the University of Patras in 1997. He has been an assistant professor in the Department of Business Administration at the University of Patras since 2001. His primary research interests include data mining, business intelligence, knowledge representation techniques, nonmonotonic reasoning, and parallel AI. Dimitris K. Tasoulis received his diploma in Mathematics from the University of Patras, Greece, in 2000. He attained his MSc degree in 2004 from the postgraduate course “Mathematics of Computers and Decision Making” from which he was awarded a postgraduate fellowship. Currently, he is a PhD candidate in the same course. His research activities focus on data mining, clustering, neural networks, parallel algorithms, and evolutionary computation. He is coauthor of more than ten publications. Michael N. Vrahatis is with the Department of Mathematics at the University of Patras, Greece. He received the diploma and PhD degree in Mathematics from the University of Patras in 1978 and 1982, respectively. He was a visiting research fellow at the Department of Mathematics, Cornell University (1987–1988) and a visiting professor to the INFN (Istituto Nazionale di Fisica Nucleare), Bologna, Italy (1992, 1994, and 1998); the Department of Computer Science, Katholieke Universiteit Leuven, Belgium (1999); the Department of Ocean Engineering, Design Laboratory, MIT, Cambridge, MA, USA (2000); and the Collaborative Research Center “Computational Intelligence” (SFB 531) at the Department of Computer Science, University of Dortmund, Germany (2001). He was a visiting researcher at CERN (European Organization of Nuclear Research), Geneva, Switzerland (1992) and at INRIA (Institut National de Recherche en Informatique et en Automatique), France (1998, 2003, and 2004). He is the author of more than 250 publications (more than 110 of which are published in international journals) in his research areas, including computational mathematics, optimization, neural networks, evolutionary algorithms, and artificial intelligence. His research publications have received more than 600 citations. He has been a principal investigator of several research grants from the European Union, the Hellenic Ministry of Education and Religious Affairs, and the Hellenic Ministry of Industry, Energy, and Technology. He is among the founders of the “University of Patras Artificial Intelligence Research Center” (UPAIRC), established in 1997, where currently he serves as director. He is the founder of the Computational Intelligence Laboratory (CI Lab), established in 2004 at the Department of Mathematics of University of Patras, where currently he serves as director.  相似文献   

16.
In this paper, we shall propose a method to hide a halftone secret image into two other camouflaged halftone images. In our method, we adjust the gray-level image pixel value to fit the pixel values of the secret image and two camouflaged images. Then, we use the halftone technique to transform the secret image into a secret halftone image. After that, we make two camouflaged halftone images at the same time out of the two camouflaged images and the secret halftone image. After overlaying the two camouflaged halftone images, the secret halftone image can be revealed by using our eyes. The experimental results included in this paper show that our method is very practicable. The text was submitted by the authors in English. Wei-Liang Tai received his BS degree in Computer Science in 2002 from Tamkang University, Tamsui, Taiwan, and his MS degree in Computer Science and Information Engineering in 2004 from National Chung Cheng University, Chiayi, Taiwan. He is currently a PhD student of Computer Science and Information Engineering at National Chung Cheng University. His research fields are image hiding, digital watermarking, and image compression. Chi-Shiang Chan received his BS degree in Computer Science in 1999 from National Cheng Chi University, Taipei, Taiwan, and his MS degree in Computer Science and Information Engineering in 2001 from National Chung Cheng University, Chiayi, Taiwan. He is currently a PhD student of Computer Science and Information Engineering at National Chung Cheng University. His research fields are image hiding and image compression. Chin-Chen Chang received his BS degree in Applied Mathematics in 1977 and his MS degree in Computer and Decision Sciences in 1979, both from National Tsing Hua University, Hsinchu, Taiwan. He received his PhD in Computer Engineering in 1982 from National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980–1983, he was on the faculty of the Department of Computer Engineering at National Chiao Tung University. From 1983–1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From 1989 to 2004, he has worked as a professor in the Institute of Computer Science and Information Engineering at National Chung Cheng University, Chiayi, Taiwan. Since 2005, he has worked as a professor in the Department of Information Engineering and Computer Science at Feng Chia University, Taichung, Taiwan. Dr. Chang is a fellow of the IEEE, a fellow of the IEE, and a member of the Chinese Language Computer Society, the Chinese Institute of Engineers of the Republic of China, and the Phi Tau Phi Society of the Republic of China. His research interests include computer cryptography, data engineering, and image compression.  相似文献   

17.
We report the results of a controlled experiment and a replication performed with different subjects, in which we assessed the usefulness of an Information Retrieval-based traceability recovery tool during the traceability link identification process. The main result achieved in the two experiments is that the use of a traceability recovery tool significantly reduces the time spent by the software engineer with respect to manual tracing. Replication with different subjects allowed us to investigate if subjects’ experience and ability play any role in the traceability link identification process. In particular, we made some observations concerning the retrieval accuracy achieved by the software engineers with and without the tool support and with different levels of experience and ability.
Genoveffa TortoraEmail:

Andrea De Lucia   received the Laurea degree in Computer Science from the University of Salerno, Italy, in 1991, the MSc degree in Computer Science from the University of Durham, U.K., in 1996, and the PhD in Electronic Engineering and Computer Science from the University of Naples ‘Federico II’, Italy, in 1996. He is a full professor of Software Engineering and the Director of the International Summer School on Software Engineering at the Department of Mathematics and Informatics of the University of Salerno, Italy. Previously he was at the Research Centre on Software Technology (RCOST) of the University of Sannio, Italy. Prof. De Lucia is actively consulting in industry and has been involved in several research and technology transfer projects conducted in cooperation with industrial partners. His research interests include software maintenance, program comprehension, reverse engineering, reengineering, migration, global software engineering, software configuration management, workflow management, document management, empirical software engineering, visual languages, web engineering, and e-learning. He has published more than 100 papers on these topics in international journals, books, and conference proceedings. He has also edited books and special issues of international journals and serves on the editorial and reviewer boards of international journals and on the organizing and program committees of several international conferences in the field of software engineering. Prof. De Lucia is a member of the IEEE, the IEEE Computer Society, and the executive committee of the IEEE Technical Council on Software Engineering. Rocco Oliveto   received (cum laude) the Laurea in Computer Science from the University of Salerno (Italy) in 2004. From October 2006 to February 2007 he has been a visiting student at the University College London, UK, under the supervisor of Prof. Anthony Finkelstein. He received the PhD in Computer Science from the University of Salerno (Italy) in 2008. He is currently a research fellow at the Department of Mathematics and Informatics of the University of Salerno. Moreover, since 2005 he is also contract lecturer at the Faculty of Science of the University of Molise. His research interests include traceability management, information retrieval, empirical software engineering, software maintenance, program comprehension, and cooperative supports for software engineering. Dr. Oliveto is a member of IEEE and ACM. Genoveffa Tortora   received the Laurea degree in Computer Science from the University of Salerno, Italy, in 1978. Since 1990, she has been a full professor at University of Salerno, Italy, where she teaches database systems and fundamentals of computer science. In 1998, she was a founding member of the Department of Mathematics and Computer Science, acting as chair until October 2000. Since November 2000, she has been the dean of the Faculty of Mathematical, Natural, and Physical Sciences. She is author and coauthor of several papers published in scientific journals, books, and proceedings of refereed conferences, and is coeditor of two books. She is an associate editor and reviewer for international scientific journals. She has been program chair and program committee member in a number of international conferences. Her research interests include software engineering, visual languages, geographical information systems, and pictorial information systems. She is a senior member of the IEEE Computer Society.   相似文献   

18.
Adaptive sensing involves actively managing sensor resources to achieve a sensing task, such as object detection, classification, and tracking, and represents a promising direction for new applications of discrete event system methods. We describe an approach to adaptive sensing based on approximately solving a partially observable Markov decision process (POMDP) formulation of the problem. Such approximations are necessary because of the very large state space involved in practical adaptive sensing problems, precluding exact computation of optimal solutions. We review the theory of POMDPs and show how the theory applies to adaptive sensing problems. We then describe a variety of approximation methods, with examples to illustrate their application in adaptive sensing. The examples also demonstrate the gains that are possible from nonmyopic methods relative to myopic methods, and highlight some insights into the dependence of such gains on the sensing resources and environment.
Alfred O. Hero IIIEmail:

Edwin K. P. Chong   received the BE(Hons) degree with First Class Honors from the University of Adelaide, South Australia, in 1987; and the MA and PhD degrees in 1989 and 1991, respectively, both from Princeton University, where he held an IBM Fellowship. He joined the School of Electrical and Computer Engineering at Purdue University in 1991, where he was named a University Faculty Scholar in 1999, and was promoted to Professor in 2001. Since August 2001, he has been a Professor of Electrical and Computer Engineering and a Professor of Mathematics at Colorado State University. His research interests span the areas of communication and sensor networks, stochastic modeling and control, and optimization methods. He coauthored the recent best-selling book, An Introduction to Optimization, 3rd Edition, Wiley-Interscience, 2008. He is currently on the editorial board of the IEEE Transactions on Automatic Control, Computer Networks, Journal of Control Science and Engineering, and IEEE Expert Now. He is a Fellow of the IEEE, and served as an IEEE Control Systems Society Distinguished Lecturer. He received the NSF CAREER Award in 1995 and the ASEE Frederick Emmons Terman Award in 1998. He was a co-recipient of the 2004 Best Paper Award for a paper in the journal Computer Networks. He has served as Principal Investigator for numerous funded projects from NSF, DARPA, and other funding agencies. Christopher M. Kreucher   received the BS, MS, and PhD degrees in Electrical Engineering from the University of Michigan in 1997, 1998, and 2005, respectively. He is currently a Senior Systems Engineer at Integrity Applications Incorporated in Ann Arbor, Michigan. His current research interests include nonlinear filtering (specifically particle filtering), Bayesian methods of fusion and multitarget tracking, self localization, information theoretic sensor management, and distributed swarm management. Alfred O. Hero III   received the BS (summa cum laude) from Boston University (1980) and the PhD from Princeton University (1984), both in Electrical Engineering. Since 1984 he has been with the University of Michigan, Ann Arbor, where he is a Professor in the Department of Electrical Engineering and Computer Science and, by courtesy, in the Department of Biomedical Engineering and the Department of Statistics. He has held visiting positions at Massachusetts Institute of Technology (2006), Boston University, I3S University of Nice, Sophia-Antipolis, France (2001), Ecole Normale Superieure de Lyon (1999), Ecole Nationale Superieure des Telecommunications, Paris (1999), Scientific Research Labs of the Ford Motor Company, Dearborn, Michigan (1993), Ecole Nationale Superieure des Techniques Avancees (ENSTA), Ecole Superieure d’Electricite, Paris (1990), and M.I.T. Lincoln Laboratory (1987–1989). His recent research interests have been in areas including: inference for sensor networks, adaptive sensing, bioinformatics, inverse problems. and statistical signal and image processing. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a member of Tau Beta Pi, the American Statistical Association (ASA), the Society for Industrial and Applied Mathematics (SIAM), and the US National Commission (Commission C) of the International Union of Radio Science (URSI). He has received a IEEE Signal Processing Society Meritorious Service Award (1998), IEEE Signal Processing Society Best Paper Award (1998), a IEEE Third Millenium Medal and a 2002 IEEE Signal Processing Society Distinguished Lecturership. He was President of the IEEE Signal Processing Society (2006–2007) and during his term served on the TAB Periodicals Committee (2006). He was a member of the IEEE TAB Society Review Committee (2008) and is Director-elect of IEEE for Division IX (2009).   相似文献   

19.
Sound and, specifically, music is a medium that is used for a wide range of purposes in different situations in very different ways. Ways for music selection and consumption range from completely passive, almost unnoticed perception of background sound environments to the very specific selection of a particular recording of a piece of music with a specific orchestra and conductor at a certain event. Different systems and interfaces exist for the broad range of needs in music consumption. Locating a particular recording is well supported by traditional search interfaces via metadata. Other interfaces support the automatic creation of playlists via artist or album selection, up to more artistic installations of sound environments that users can navigate through. In this paper we present a set of systems that support the creation of as well as the navigation in musical spaces, both in the real world as well as in virtual environments. We show common principles and point out further directions for a more direct coupling of the various spaces and interaction methods, creating ambient sound environments and providing organic interaction with music for different purposes.
Andreas RauberEmail:

Jakob Frank   is a Research Assistant at the Department of Software Technology and Interactive Systems of the Vienna University of Technology (TU Vienna). He received his Bachelor in Computer Science from the Vienna University of Technology in 2006. His research focus is on music information retrieval, especially on mobile devices and multi-user audio interaction. He was co-organizer of the ISMIR 2007 conference and served as co-reviewer for several major international conferences. Thomas Lidy   is a Research Assistant at the Department of Software Technology and Interactive Systems of the Vienna University of Technology (TU Vienna). He received his MSc in Computer Science from the Vienna University of Technology in 2007. His research focus is on music information retrieval, in particular feature extraction methods for digital audio, music classification, and clustering and visualization of digital music libraries. He participates actively in the annual MIREX benchmarking campaign and was co-organizer of the ISMIR 2007 conference. He is author of numerous papers in refereed international conferences and workshops and served as co-reviewer for several major international conferences. In 2007, he was awarded the Distinguished Young Alumnus Award and also received a Microsoft Sponsorship Award. Ewald Peiszer   is a freelance web application and software developer with a strong scientific background. He received his MSc degree in Computer Science from Vienna University of Technology in 2007 with a master’s thesis on automatic audio segmentation. Working towards combining Music Information Retrieval (MIR) techniques with Virtual Reality infrastructure he completed an internship at the Center for Computer Graphics and Virtual Reality, Ewha Womans University (Seoul). Occasionally, he (co-)authors articles on MIR topics which is also a focus of his freelance projects. Ronald Genswaider   graduated as Master of Economics in 2008 at the Department of Software Technology and Interactive Systems of the Vienna University of Technology (TU Vienna) as well as Master of Arts in the Department of Digital Arts at the University of Applied Arts in Vienna. He is working in Vienna as a free digital artist, Web developer and researcher. Currently he is working in various research projects in the R&D department at bwin and taking part in the exhibition “YOU_ser—Century of the consumer” at the ZKM in Karlsruhe, Germany. Andreas Rauber   is Associate Professor at the Department of Software Technology and Interactive Systems of the Vienna University of Technology (TU Vienna). He received his MSc and PhD in Computer Science from the Vienna University of Technology in 1997 and 2000, respectively. He is actively involved in several research projects in the field of Digital Libraries, focusing on text and music information retrieval, the organization and exploration of large information spaces, as well as Web archiving and digital preservation. He has published numerous papers in refereed journals and international conferences and served as PC member and reviewer for several major journals, conferences and workshops. He also co-organized the ECDL 2005 and ISMIR 2007 conferences.   相似文献   

20.
Coupling represents the degree of interdependence between two software components. Understanding software dependency is directly related to improving software understandability, maintainability, and reusability. In this paper, we analyze the difference between component coupling and component dependency, introduce a two-parameter component coupling metric and a three-parameter component dependency metric. An important parameter in both these metrics is coupling distance, which represents the relevance of two coupled components. These metrics are applicable to layered component-based software. These metrics can be used to represent the dependencies induced by all types of software coupling. We show how to determine coupling and dependency of all scales of software components using these metrics. These metrics are then applied to Apache HTTP, an open-source web server. The study shows that coupling distance is related to the number of modifications of a component, which is an important indicator of component fault rate, stability and subsequently, component complexity.
Srini RamaswamyEmail: Email:

Liguo Yu   received the Ph.D. degree in Computer Science from Vanderbilt University. He is an assistant professor of Computer and Information Sciences Department at Indiana University South Bend. Before joining IUSB, he was a visiting assistant professor at Tennessee Technological University. His research concentrates on software coupling, software maintenance, software reuse, software testing, software management, and open-source software development. Kai Chen   received the Ph.D. degree from the Department of Electrical Engineering and Computer Science at Vanderbilt University. He is working at Google Incorporation. His current research interests include development and maintenance of open-source software, embedded software design, component-based design, model-based design, formal methods and model verification. Srini Ramaswamy   earned his Ph.D. degree in Computer Science in 1994 from the Center for Advanced Computer Studies (CACS) at the University of Southwestern Louisiana (now University of Louisiana at Lafayette). His research interests are on intelligent and flexible control systems, behavior modeling, analysis and simulation, software stability and scalability. He is currently the Chairperson of the Department of Computer Science, University of Arkansas at Little Rock. Before joining UALR, he is the chairman of Computer Science Department at Tennessee Tech University. He is member of the Association of Computing Machinery, Society for Computer Simulation International, Computing Professionals for Social Responsibility and a senior member of the IEEE.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号