首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
堆焊     
20091216Fe-Cr-C系药芯焊丝耐磨堆焊层的组织和性能/肖逸锋…//热加工工艺.-2008,37(11):1~3在Fe-Cr-C系药芯焊丝药芯中添加多种强碳化物形成元素,研究了堆敷金属的显微组织、耐磨性和抗氧化性。结果表明,堆焊层金属中大量呈针状和片状的细小碳化物均匀分布在共晶组织和马氏体基体上,改善堆焊金属的韧性,提高了抗裂性;焊缝金属的硬度为61.7HRC,耐磨性好,其相对耐磨性是市售某药芯焊丝堆焊层金属的3.75倍;堆焊层金属高温稳定性好,抗氧化能力强;焊丝适用于高温低应力磨料磨损环境。图3表4参520091217Fe-Cr-V耐磨堆焊合金/龚建勋…//焊接学报.-2008,29(7):73~76制备了用于埋弧焊药芯焊丝的Fe-Cr-V堆焊合金,其成份(质量分数,%)为C0.9~1.5,Cr13~15,V1.0~2.0。借助光学显微镜、扫描电镜和X射线衍射等手段,研究了其显微组织,并考察V和B4C含量对该堆焊合金性能的影响。Fe-Cr-V堆焊合金的显微组织由铁素体+马氏体+(Cr,Fe)23C6等碳化物组成。电子能谱微区分析显示Cr,V元素晶界含量显著高于晶内,随WC加入量提高,晶界与晶内含量差...  相似文献   

2.
堆焊     
20091216Fe-Cr-C系药芯焊丝耐磨堆焊层的组织和性能/肖逸锋…//热加工工艺.-2008,37(11):1~3在Fe-Cr-C系药芯焊丝药芯中添加多种强碳化物形成元素,研究了堆敷金属的显微组织、耐磨性和抗氧化性。结果表明,堆焊层金属中大量呈针状和片状的细小碳化物均匀分布在共晶组织和马氏体基体上,改善堆焊金属的韧性,提高了抗裂性;焊缝金属的硬度为61.7HRC,耐磨性好,其相对耐磨性是市售某药芯焊丝堆焊层金属的3.75倍;堆焊层金属高温稳定性好,抗氧化能力强;焊丝适用于高温低应力磨料磨损环境。图3表4参520091217Fe-Cr-V耐磨堆焊合金/龚建勋…//焊接学报.-2008,29(7):73~76制备了用于埋弧焊药芯焊丝的Fe-Cr-V堆焊合金,其成份(质量分数,%)为C0.9~1.5,Cr13~15,V1.0~2.0。借助光学显微镜、扫描电镜和X射线衍射等手段,研究了其显微组织,并考察V和B4C含量对该堆焊合金性能的影响。Fe-Cr-V堆焊合金的显微组织由铁素体+马氏体+(Cr,Fe)23C6等碳化物组成。电子能谱微区分析显示Cr,V元素晶界含量显著高于晶内,随WC加入量提高,晶界与晶内含量差...  相似文献   

3.
Fe-C-Cr-V高铬堆焊合金的M7C3型碳化物及耐磨性   总被引:4,自引:1,他引:3       下载免费PDF全文
采用药芯焊丝埋弧堆焊方法制备含有0.9%~3.0%C,15%~20%Cr,2.0%~3.0%V的高铬合金.借助光学显微镜、扫描电镜和X射线衍射等手段,研究其显微组织及碳化物分布形貌.结果表明,其显微组织由马氏体+铁素体+奥氏体+初生M7C3+(Fe,Cr)3C+TiC等相组成.通过优化药芯焊丝组份及调整堆焊速度,获得了沿堆焊表面垂直方向定向分布的初生M7C3型碳化物,电子能谱分析显示该碳化物为(Fe,Cr,V)7C3.此外,考察了碳含量对高铬堆焊合金硬度及耐磨粒磨损性能的影响.表明其耐磨性优良,其中15~25μm M7C3型初生碳化物颗粒有效阻碍磨粒的显微切削运动,显著改善了耐磨性.  相似文献   

4.
为了探讨合金元素Cr,C对高硼铁基堆焊合金组织结构的影响,采用气体保护焊堆焊技术,通过调整金属粉芯焊丝中高碳铬铁的添加量,在Q235钢板表面制备不同高碳铬铁含量的Fe-Cr-B-C堆焊合金,采用金相显微镜、扫描电镜、能谱(energy dispersive spectrometer,EDS)及X射线衍射(X-ray diffraction,XRD)等分析测试方法,分析不同合金元素Cr,C含量对堆焊合金组织和性能的影响。结果表明,堆焊合金的组织为马氏体+网状(Fe, Cr)3(B, C)及少量的微量M7C3;随着高碳铬铁粉添加量的增加,网状(Fe, Cr)3(B, C)体积分数增加,堆焊合金中的马氏体具有较高的硬度,合金元素Cr能够使基体组织固溶强化,网状碳化物(Fe, Cr)3(B, C)作为耐磨骨架,阻碍磨料在磨损过程中的挤压与切削作用,使堆焊层耐磨性均高于65Mn钢3~4倍,其磨损机理为微犁沟。  相似文献   

5.
以堆焊连铸辊为研究对象,研制三种不同合金元素Nb加入量的药芯焊丝,采用金相显微镜和扫描电镜对其显微组织、碳化物形貌进行了观察. 采用X射线衍射仪对其相结构进行了测定. 采用Thermo-Calc软件对含铌堆焊层金属中碳化物的析出行为进行分析. 结果表明,堆焊层金属显微组织为铁素体、M23C6MC. 随着Nb元素含量增加,其显微组织得到细化,NbC沿晶界析出. 热力学计算结果表明,析出碳化物主要为MC,M23C6. 随着Nb元素含量的增加,MC析出量增多,M23C6析出量减小. MC中主要是Nb元素,并溶解了一定量的Mo,V,Cr和Fe元素;M23C6中主要是Fe,Cr元素,即Nb元素含量变化主要影响MC型碳化物.  相似文献   

6.
为解决水泥、电力、冶金、矿山等行业立磨、辊压机、耐磨板等耐磨部件的耐磨损问题,对铁基硬面堆焊药芯焊丝进行了研究。通过调整药芯焊丝中碳、铬含量以及一种或多种强化合金元素种类与含量,制备了碳含量4%~6%,铬含量20%~35%,其他合金元素含量小于10%的铁基硬面堆焊合金,分析了堆焊合金显微组织和硬度,对合金中硬质碳化物面积百分比、碳化物尺寸进行了定量分析,对堆焊合金的耐磨性进行了试验。结果表明:堆焊合金的主要组织为初生碳化物(Cr,Fe)7C3、共晶碳化物(Cr,Fe)7C3、残余奥氏体及少量其他碳化物;随合金中初生碳化物的增加,合金硬度和耐磨性增加,但碳化物过多时,硬度继续增加,耐磨性反而下降;适量合金元素Nb、Mo等的加入,在合金中以固溶体和细小弥散分布的硬质相的形式存在,有利于提高合金的耐磨性。通过配方设计和应用试验,成功开发出6种硬面堆焊用药芯焊丝。  相似文献   

7.
Fe-Cr-B-C堆焊合金的显微组织及耐磨性   总被引:6,自引:1,他引:6  
采用药芯焊丝埋弧堆焊方法制备含有C0.5%~0.7%,Cr9%~12%,B0%~2.25%(质量分数)的堆焊合金。借助光学显微镜、扫描电镜、X射线衍射和微区EDS分析等手段研究其显微组织及分布形貌。结果表明,其显微组织由铁素体+奥氏体+马氏体+硼化物((Fe,Cr)2B,(Fe,Cr)23(C,B)6,(Fe,Cr)B和(Fe,Cr)3(B,C))等组成,硼化物呈条状、菊花状、块状甚至蜂窝状等形态,不同硼化物数量及其分布形态随硼含量而改变,其中最为典型是(Fe,Cr)23(C,B)6呈菊花状并聚集分布。另外,考察了硼含量对Fe-10Cr-xB-0.6C堆焊合金硬度及耐磨性的影响,耐磨粒磨损试验结果表明,高硼堆焊合金的磨损性优良,当聚集分布的硼化物数量过多,磨粒压入基体及其显微切削运动受到硼化物的有效阻碍,但部分硼化物脱落留下的空洞使其压入切削变易,这使得硼化物与基体的界面结合强度成为影响其耐磨性的一个重要甚至主导因素。  相似文献   

8.
Cr对Fe-Cr-B-C系堆焊合金热处理后的组织和磨损性能的影响   总被引:1,自引:0,他引:1  
观察采用药芯焊丝堆焊方法在Q235钢基体上制备了含Cr含量分别为12%、14%、16%和18%的Fe-Cr-B-C系耐磨合金。对堆焊合金进行600℃热处理,研究了不同Cr含量对焊态和热处理后堆焊合金的显微组织和磨粒耐磨性能的影响。结果表明,堆焊合金硬质相主要为(Fe,Cr)23(B,C)6,焊态基体组织为马氏体和残留奥氏体,热处理后基体组织为回火索氏体;当Cr含量达到14%,硬质相(Fe,Cr)23(B,C)6高温下稳定;Cr含量对堆焊合金热处理后磨损性能有很大影响,含12%Cr堆焊合金的相对耐磨性由焊态的10.65下降到2.08,耐磨性只有焊态的19.5%,而16%Cr的堆焊合金热处理后耐磨性为9.08,具有良好的耐磨性能。  相似文献   

9.
采用等离子堆焊技术在304L不锈钢表面堆焊Ni-Cr-B-Si合金粉末熔覆层。应用扫描电子显微镜、电子探针、X-射线衍射仪、显微硬度计等测试手段,研究两种Ni-Cr-B-Si系合金成分等离子堆焊层组织结构和显微硬度。结果表明:堆焊合金层组织由毭-Ni树枝晶和树枝晶间多元共晶组成;Cr,C,B和Si元素含量增加,树枝状组织含量大幅减少,碳化物和硼化物含量显著增加。硬度测试结果表明:硼化物和碳化物含量增大使得堆焊层硬度显著提高。  相似文献   

10.
张彦超  崔丽  贺定勇  周正 《焊接学报》2014,35(3):89-92104
采用直径为1.6 mm的细径药芯焊丝,利用CO2气体保护焊堆焊的方法制备了含有1.0%~3.0%C(质量分数),15%~20%Cr,0%~2.0%B的高铬堆焊合金.研究了B4C含量对堆焊合金的硬度及耐磨性的影响.结果表明,堆焊合金的硬度从57.1 HRC增加到65.2 HRC,硬度提高14.2%;堆焊层合金的相对耐磨性从3.5倍提高到18.0倍.借助光学显微镜、扫描电镜和X射线衍射等微观分析方法,研究了堆焊合金的显微组织及碳化物分布形貌.结果表明,堆焊合金的显微组织主要由铁素体+奥氏体+(Fe,Cr)7C3组成,加入B4C可显著改善堆焊合金层基体组织,使碳化物(Fe,Cr)7C3数量增加且呈弥散分布.  相似文献   

11.
The aim of this study is to discuss the effect of microstructural development with different Ti contents in Fe-based hardfacing alloys. A series of Fe-Cr-C-Si-Mn-xTi alloy fillers was deposited on SS400 low carbon steel substrate using oscillating gas tungsten arc welding. The microstructure in the Fe-based hardfacing alloy without Ti content addition included: the primary γ, eutectic γ+(Fe,Cr)3C, eutectic γ+(Fe,Cr)2C and martensite. With increasing Ti contents, the microstructures showed the primary TiC carbide, γ phase and eutectic γ+(Fe,Cr,Ti)3C. The amount and size of TiC carbide in the hardfacing layers increased as the Ti content increased. However, the eutectic γ+(Fe,Cr,Ti)3C content decreased as the Ti content increased. According to the results of the hardness test, the lowest hardness value (HRC 54.93) was found with 0% wt% Ti and the highest hardness (HRC 60.29) was observed with 4.87 wt% Ti.  相似文献   

12.
Appropriate deep cryogenic treatment can improve comprehensive mechanical properties of the AISI304 austenitic stainless steel activating flux tungsten inert gas (A-TIG) welds. The microstructure of the welds before and after deep cryogenic treatment was all austenite with a small amount of δ-ferrite. The vermiform ferrite + austenite distributed in the whole weld, but the lath-shaped ferrite + austenite mixed components only distributed in the centre of the weld. The phases in the two welds were all Cr–Ni–Fe–C and Fe–Ni solid solutions, ferric carbide (i.e. Fe3C) and chromic carbides (i.e. Cr23C6 and Cr7C3). After deep cryogenic treatment, the grain size of the weld was decreased a certain of degree, and the carbide phase content was increased. The strength and micro-hardness of the weld joints were increased due to the grain refinement. The intergranular corrosion resistance of the weld was reduced because the precipitation of chromium carbides at the austenite grain boundary.  相似文献   

13.
采用药芯焊丝自保护明弧焊方法在Q235A基体上制备了Fe-Cr-C-B-Si耐磨合金.借助光学显微镜、扫描电镜、X-射线衍射仪和硬度测试等手段研究了以Fe-Si形式加入的硅含量对其组织和性能的影响.结果表明,硅含量显著影响其碳化物形貌、分布及尺寸,具体表现为硅含量提高,随之出现了硬度高达9.75~13.54 GPa的白色团状相,尺寸增大并呈聚集分布;背散射电子扫描图、电子能谱分析和显微硬度测试显示该团状相为双相复合碳化物,其内部为M23C6相,外表则是较低Cr,C元素含量的碳化物.此外湿砂磨粒磨损试验结果表明,适量硅显著改善了明弧堆焊合金的耐磨性,所含M23C6相尺寸和显微硬度明显影响其磨损失重.  相似文献   

14.
A series of Fe-Cr-C hardfacing alloys is deposited by gas tungsten arc welding and subjected to abrasive wear testing. Pure Fe with various amounts of CrC (Cr:C=4:1) powders are mixed as the fillers and used to deposit hardfacing alloys on low carbon steel. Depending on the various CrC additions to the alloy fillers, the claddings mainly contain hypoeutectic, near eutectic, or hypereutectic microstructures of austenite γ-Fe phase and (Cr,Fe)7C3 carbides on hardfacing alloys, respectively. When 30% CrC is added to the filler, the finest microstructure is achieved, which corresponds to the γ-Fe+(Cr,Fe)7C3 eutectic structure. With the addition of 35% and 40% CrC to the fillers, the results show that the cladding consists of the massive primary (Cr,Fe)7C3 as the reinforcing phase and interdendritic γ-Fe+(Cr,Fe)7C3 eutectics as the matrix. The (Cr,Fe)7C3 carbide-reinforced claddings have high hardness and excellent wear resistance under abrasive wear test conditions. Concerning the abrasive wear feature observable on the worn surface, the formation and fraction of massive primary (Cr,Fe)7C3 carbides predominates the wear resistance of hardfacing alloys. Abrasive particles result in continuous plastic grooves when the cladding has primary γ-Fe phase in a hypoeutectic structure.  相似文献   

15.
The relationship between secondary carbide precipitation and transformation of the 16Cr-1Mo-1Cu white iron and abrasion resistance were investigated. The results show that secondary carbide precipitation and transformation at holding stage play an important role in the hardness and abrasion resistance. After being held for a certain time at 853 K for subcritical treatment, the grainy secondary carbide, (Fe,Cr)23C6, precipitated first and then Fe2MoC or MoC carbides precipitated in the alloy, both of which improve the bulk hardness and abrasion resistance of the alloy. The reasons for these improvements are the secondary carbide precipitates from the austenite and the retained austenite transforms into the martensite, both make the matrix strengthen. So the matrix has more effective support to the harder eutectic carbide against exterior abrasion. With expanding the holding time, the in situ transformation from the granular (Fe,Cr)23C6 carbide into laminar M3C carbide causes the formation of the pearlitic matrix and an associated decrease of the alloy abrasion resistance.  相似文献   

16.
Fe-Cr-C系高碳高铬耐磨堆焊合金微观组织分析   总被引:6,自引:0,他引:6       下载免费PDF全文
研究了C元素含量6.0%左右时改变Cr元素含量和Cr元素含量40%左右时改变C元素含量两种情况下Cr及C元素各自对Fe-Cr-C合金堆焊层组织的影响.结果表明,C和Cr元素增加时,初生碳化物的量增加.初生碳化物随着C元素和Cr元素的增加,形态越来越规则,分布越来越密集,初生碳化物颗粒的单个尺寸增大.C元素含量6.0%左右,Cr元素含量增大时,初生碳化物微区Cr元素含量增加;而当Cr元素含量40%左右,C元素含量增加时,初生碳化物微区Cr元素含量反而降低.  相似文献   

17.
钒对铁基碳化钨耐磨堆焊层组织和性能的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
魏炜  黄智泉  张海燕  杨威 《焊接学报》2019,40(6):131-136
在自研制的碳化钨管状药芯焊条中添加不同含量的钒元素(0%~3%)并制备堆焊合金,通过SEM,XRD,EDS等研究分析手段,研究不同钒含量对碳化钨耐磨层组织性能的影响规律.结果表明,钒含量与堆焊层中碳化钨颗粒的溶解程度密切相关,钒优先将碳化钨颗粒分解出的碳原子以碳化钒形式固定,从而抑制了碳化钨颗粒的分解,钒元素含量决定了碳化钨溶解的强弱,含有2%钒元素的堆焊层中生成适量碳化钒有效抑制了碳化钨的溶解.钒元素的加入还能强化碳化钨堆焊层基体金属的硬度,降低堆焊层中碳化钨颗粒剥落的风险,有效提高了堆焊层的耐磨性.  相似文献   

18.
Abstract

Different amounts of TiB2 powder were added to flux cores of wear resistant hardfacing flux cored wires for the preparation of new flux cored wires. Fe–Cr–C hardfacing alloys reinforced with TiB2 were produced by arc hardfacing. The microstructure, hardness and wear resistance behaviour of the hardfacing alloys were investigated using an optical micrograph, scanning electron micrograph (SEM), X-ray diffractometer, macrohardness tester, microhardness tester and abrasive wear tester. The results showed that, among the hardfacing alloys, a new hard phase, i.e. TiC–TiB2 composite compound particles, was formed and dispersed in the primary carbides and matrix structures. The TiC–TiB2 reinforced Fe–Cr–C hardfacing alloys imparted greater hardness and better wear resistance. The presence of TiC–TiB2 hard phase particles is the main reason for the improvement in hardness and wear resistance of Fe–Cr–C hardfacing alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号