首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文研究了AS/EVA/NBR共混体系性能与组成比,形态结构的关系;并研究了NBR组成对共混体系性能的影响。结果表明EVA可作为AS与NBR的相容剂;适量EVA可以大幅度提高共混物的冲击韧性,且可改善制品外观;共混物具有优良的常,低温冲击韧性。较好的其它力学性能性。TEM观察结果揭示EVA的加入可使NBR颗粒分布均匀,粒径变小;部分EVA处于NBR颗粒与AS基本相界面上,起着相容的作用。  相似文献   

2.
CPE对PVC/SBR共混体系增容作用的研究   总被引:6,自引:0,他引:6  
通过微观冲击试验、动态力学分析(DMA)、扫描电镜(SEM)和透射电镜(TEM)观察,研究了氯化聚乙烯(CPE)增容的PVC/丁苯橡胶(SBR)共混物的性能与形态结构之间的关系。试验结果表明CPE对PVC/SBR共混体系有良好的增容作用。  相似文献   

3.
PO/PS合金的相态结构与力学性能   总被引:2,自引:0,他引:2  
以氢化SBS(SEBS)为增容剂的聚烯烃/聚苯乙烯(PO/PS)合金,与聚烯烃相比具有更好的力学性能,尤其是抗冲击强度随机容剂的增加而大幅度提高,应用TEM,SEM、DSC、偏光显微技术对一系列合金相形态,相容程度及分散相颗粒尺的考察研究发现,合金中分散相多数呈卵石状,随SEBS含量增加,分散相粒径显著变小,而合金抗冲击强度增大,分散相形态结构。颗粒尺寸与材料力学性能密切相联。  相似文献   

4.
研究了AS/MBS/CPE共混体系性能与组成比,形态结构的关系,结果表明,对于AS树脂,MBS与CPE之间存在较强的协同增韧效应,当MBS与CPE之比为1:1时,此协同效应最佳。  相似文献   

5.
研究了在多官能团单体异氰尿酸三烯丙酯存在下,辐射对PP/BR共混体系的影响,并用SEM,DSC和动态力学等技术对其进行了表征。结果显示,辐射引发TAIC参与的界面反应改变了PP/BR的形态结构,增强了两相的界面粘接,改善了相容性,提高了力学性能。  相似文献   

6.
本文研究了MBS对PVC与线型SBS、星型SBS共混体系的增容作用,测定了共混物的冲击强度、应力一应变行为、动态力学性能以及共混物的形态结构,讨论了共混物性能与形态结构之间的关系。实验结果表明,MBS与SBS有协同增韧效应,显著地提高了共混物的韧性。  相似文献   

7.
冯威  李齐方 《中国塑料》1999,13(9):30-39
以SEBS,SEBS-g-MAH,POE-g-MAH作为增韧改性剂,单独或并用对聚苯醚(PPO)/PA6共混物进行增韧。TEM的结果显示,在所制备的多相体系中,SEBS大多被包容在PPO分散要中;而SEBS-g-MAH和POE-g-MAH均分散在PA6的基体中,形成了多种形态结构。冲击断面下方应力发白区的TEM照片上有大量的空穴,表明弹性体的空穴化是诱发剪切带,从而吸引能量的根源。  相似文献   

8.
透明PVC/MBS合金的研究   总被引:11,自引:1,他引:10  
张莹  郝海涓 《中国塑料》1998,12(3):47-51
本文对不同型号的PVC与MBS进行共混改性,通过冲击,应力-应变试验,动态力学分析(DMA)、扫描电镜(SEM)和紫外可见光谱研究了PVC/MBS共混体系的性能与形态结构之间的关系。结果表明,用MBS改性PVC既能有效地提高共混物的韧性,又能保证其具有良好的透光率。  相似文献   

9.
李为民  李松 《中国塑料》1995,9(1):36-42
本文研究了AS/MBS/NBR共混体系的性能与组成比,形态结构的关系;考察了MBS及NBR牌号,成型加工温度对共混物性能的影响。结果表明,对于AS树脂,MBS与NBR之间存在强烈的同增韧效应,当总弹性体含量为30%时,MBS与NBR配比在1/11-1/1如此宽的范围内,共混物均具有优异的冲击韧性,且变化不大,其数值在687-713J/m之间;共混物同时具有良好的综合性能。  相似文献   

10.
每期文摘的题目均按汉语拼音顺序排列,英文按其字母顺序排列在汉字之前,数字开头的题目排在最前面。  AS/MBS/EVA三元共混体系力学性能及微观形态/冯汇(中山大学高分子研究所)/现代塑料加工应用。1999,11(1):6~ 8。研究了AS/MBS/EVA三元共混体系的力学性质和微观形态。采用EVA为相容剂改善核壳型粒子MBS在AS基体中的分散,达到良好效果,在保持良好弯曲性能的同时,提高了基体的缺口冲击强度。AS/MBS/SBR的力学性能及其微观形态/冯汇(中山大学高分子研究所)/塑料工业。1999,2 7(1…  相似文献   

11.
The effect of organoclay on phase morphology development of PA6/SEBS alloys had been investigated. PA6/SEBS blends of various compositions, with and without the presence of exfoliated organoclay in the PA6 phase, were prepared and the morphology and thermal expansion of these blends were examined. The results suggested that at compositions where PA6 remains as the matrix domain, the presence of the organoclay had little or no effect upon the blends morphology, PA6/SEBS alloy with SEBS as the matrix could evolve from sea‐island to cocontinuous structure after 5 phr organoclay were added. Significant reduction in the coefficient of linear thermal expansion (CLTE) along theflow direction and furthermore improving the heat distortion temperature of the injection‐molded PA6/SEBS/organoclay ternary nanocomposites was observed due to the formation of a total stable and fine cocontinuous nanolayer structure. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
PP/AS/DCP反应共混中SEBS的添加效应   总被引:4,自引:0,他引:4  
研究了在聚丙烯(PP)/丙烯腈-苯乙烯共聚物(AS)/过氧化二异丙苯(DCP)共混物反应挤出过程中添加热塑弹性体氢化(苯乙烯-丁二烯-苯乙烯共聚物)(SEBS)对PP/AS共混物降解的抑制效果对接枝反应的促进作用。对反应经物中PP相MFR、红外测试及扫描电子显微镜与航向电子显微镜对共混物的观察结果表明,加入SEBS不但可以抑制反应共混中PP和AS的降解,而且可以大大促进反应共混中的接枝反应的进行,  相似文献   

13.
研究了聚丙烯(PP)/聚酰胺6(PA6)/氢化苯乙烯-丁二烯嵌段共聚物(SEBS)/石墨烯微片(GNPs)纳米复合材料在不同共混顺序下的微观形貌、导电及导热性能,分析了GNPs在复合体系中的选择性分布和迁移及其对复合材料性能的影响.结果表明,在PP/PA6/SEBS/GNPs共混体系中,GNPs在界面张力的作用下趋向于...  相似文献   

14.
The morphology development of polypropylene (PP)/polyethylene terephthalate (PET)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and their fibers were studied by means of scanning electron microscopy (SEM) in conjunction with the melt linear viscoelastic measurements. The morphology of the blends was also predicted by using Harkin's spreading coefficient approach. The samples varying in composition with PP as the major phase and PET and SEBS as the minor phases were considered. Although SEM of the binary blends showed matrix‐dispersed type morphology, the ternary blend samples exhibited a morphological feature in which the dispersed phase formed aggregates consisting of both PET and SEBS particles distributed in the PP matrix. The SEM of the blend samples containing 30 and 40 wt % of total dispersed phase showed an agglomerated structure formed between the aggregates. The SEM of the PP/PET binary fiber blends showed long well‐oriented microfibrils of PET whereas in the ternary blends, the microfibrils were found to have lower aspect ratio with a fraction of the SEBS stuck on the microfibril fracture surfaces. These results were attributed to a core‐shell type morphology in which the PET and SEBS formed the core‐shells distributed in the matrix. The melt viscoelastic behavior of the ternary blends containing less than 30 wt % of the total dispersed phase was found to be similar to the matrix and binary blend samples whereas the samples containing 30 and 40 wt % of dispersed phases exhibited a pronounced viscosity upturn and nonterminal storage modulus in low frequency range. These results were found to be in good agreement with the morphological results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In this work, ternary polymer blends based on polypropylene (PP)/polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) triblock copolymer and a reactive maleic anhydride grafted SEBS (SEBS‐g‐MAH) at fixed compositions are prepared using twin‐screw extruder at different levels of die temperature (235‐245‐255°C), screw speed (70‐100‐130 rpm), and blending sequence (M1‐M2‐M3). In M1 procedure, all of the components are dry blended and extruded simultaneously using Brabender twin‐screw extruder, whereas in M2 procedure, PC, SEBS, and SEBS‐g‐MAH minor phases are first preblended in twin‐screw extruder and after granulating are added to PP continuous phase in twin‐screw extruder. Consequently, in M3 procedure, PP and SEBS‐g‐MAH are first preblended and then are extruded with other components. The influence of these parameters as processing conditions on mechanical properties of PP/PC/SEBS ternary blends is investigated using L9 Taguchi experimental design. The responding variables are impact strength and tensile properties (Young's modulus and yield stress), which are influenced by the morphology of ternary blend, and the results are used to perform the analysis of mean effect as well. It is shown that the resulted morphology, tensile properties, and impact strength are influenced by extrusion variables. Additionally, the optimum processing conditions of ternary PP/PC/SEBS blends were achieved via Taguchi analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Melt rheological properties of the ternary blend of isotactic polypropylene (PP), styreneethylene–butylene–styrene terpolymer (SEBS), and polycarbonate (PC), PP/SEBS/PC, are studied in a wide range of composition, such that PP is the matrix and SEBS and PC are the minor components, with the proportion of one varying from 0 to 30% at various fixed compositions of the other. The respective binary blends, PP/SEBS and PP/PC, studied as the reference systems for interpretation of results on the ternary blends yielded interesting new information about the morphology development and its correlation with melt rheological properties of these binary blends. The studies include the measurement of melt rheological properties on a capillary rheometer in the shear rate range 101–104 s?1 at a fixed temperature of 240°C. The data presented as conventional flow curves are analyzed for the effect of blend composition and shear rate on pseudoplasticity, melt viscosity, and melt elasticity, and role of each individual component is identified. Morphology of dispersed phases of these blends is studied through scanning electron microscopy of the cryogenically fractured and suitably etched surfaces. Variations of morphology with blend composition and shear rate showed interesting correlation with melt rheological properties, which are discussed in detail. An important finding of the morphological studies is that in the PP/SEBS/PC ternary blend the SEBS phase forms two types of morphologies depending on the blend composition and shear rate: (i) simple droplets and (ii) boundary layer at the surface of the PC droplets. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The Izod impact strength of two kinds of ternary composites was investigated. One consisted of polypropylene (PP), the triblock copolymer polystyrene‐block‐poly(ethylene butene)‐block‐polystyrene (SEBS), and calcium carbonate (CaCO3) particles, and the other consisted of PP, carboxylated SEBS (C‐SEBS), and CaCO3 particles. The mean size of the CaCO3 particles was about 160 nm. According to scanning electron microscopy observations, the composite with SEBS showed a morphology in which SEBS domains and CaCO3 particles were independently dispersed in the PP matrix. On the other hand, the composite with C‐SEBS showed a morphology in which CaCO3 particles were encapsulated by C‐SEBS; that is, a core–shell structure was formed. The Izod impact strength of the composite with SEBS was higher than that of the composite with C‐SEBS and the PP/SEBS and PP/C‐SEBS binary blends. According to observations of the fractured surface, the stress‐whitened area was larger in the composite with SEBS than in the composite with C‐SEBS and the PP/SEBS and PP/C‐SEBS binary blends. The toughening mechanism of the composite, using nanometer‐sized CaCO3 particles in combination with SEBS, was examined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
黎珂  黄汉雄 《化工学报》2013,64(6):2285-2290
引言对聚合物进行共混是改善其性能的重要方法,多元聚合物共混物结合了多种聚合物的优点,具有更多独特的性能,因此对多元尤其是三元共混物的研究越来越多[1-5]。聚合物共混物的相形态对其性能有着决定性的影响[6-9],因而相形态是共混物研究的一个非常重要的方面[9-12]。  相似文献   

20.
Ternary blends, based on 70% by weight of polypropylene (PP) with 30% by weight of a dispersed phase, consisting of 15% polyamide-6 (PA6) and 15% of a mixture comprising varying ratios of an unreactive poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer and a reactive maleic anhydride-grafted SEBS-g-MA, were produced via melt blending in a co-rotating twin-screw extruder. TEM revealed the blend containing only non-reactive SEBS to exhibit individual PA6 and SEBS dispersed phases. However, the progressive replacement of SEBS with reactive SEBS-g-MA increased the degree of interfacial reaction between the SEBS and PA6 phases, thus reducing interfacial tension and providing a driving force for encapsulation of the PA6 by the SEBS. Consequently, the dispersed-phase morphology was observed to transform from two separate phases to acorn-type composite particles, then to individual core-shell particles and finally to agglomerates of the core-shell particles. The resultant blends exhibited significant morphology-induced variations in both thermal and mechanical properties. DSC showed that blends in which the diameter of the PA6 particles was reduced to ≤3 μm by the increasing interfacial reaction exhibited fractionated PA6 crystallisation. In general, mechanical testing showed the blends to exhibit inferior low-strain tensile properties (modulus and yield stress) compared to the matrix PP, but superior ultimate tensile properties (stress and strain at break) and impact strength. These changes are discussed with reference to composite models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号