首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the boundary element method (BEM) for solving quasi‐static uncoupled thermoelasticity problems in materials with temperature dependent properties is presented. The domain integral term, in the integral representation of the governing equation, is transformed to an equivalent boundary integral by means of the dual reciprocity method (DRM). The required particular solutions are derived and outlined. The method ensures numerically efficient analysis of thermoelastic deformations in an arbitrary geometry and loading conditions. The validity and the high accuracy of the formulation is demonstrated considering a series of examples. In all numerical tests, calculation results are compared with analytical and/or finite element method (FEM) solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A boundary element method is derived for solving a class of boundary value problems governed by an elliptic second order linear partial differential equation with variable coefficients. Numerical results are given for a specific test problem.  相似文献   

3.
In the present paper a fast solver for dual boundary element analysis of 3D anisotropic crack problems is formulated, implemented and tested. The fast solver is based on the use of hierarchical matrices for the representation of the collocation matrix. The admissible low rank blocks are computed by adaptive cross approximation (ACA). The performance of ACA against the accuracy of the adopted computational scheme for the evaluation of the anisotropic kernels is investigated, focusing on the balance between the kernel representation accuracy and the accuracy required for ACA. The system solution is computed by a preconditioned GMRES and the preconditioner is built exploiting the hierarchical arithmetic and taking full advantage of the hierarchical format. The effectiveness of the proposed technique for anisotropic crack problems has been numerically demonstrated, highlighting the accuracy as well as the significant reduction in memory storage and analysis time. In particular, it has been numerically shown that the computational cost grows almost linearly with the number of degrees of freedom, obtaining up to solution speedups of order 10 for systems of order 104. Moreover, the sensitivity of the performance of the numerical scheme to materials with different degrees of anisotropy has been assessed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A dual integral formulation for the interior problem of the Laplace equation with a smooth boundary is extended to the exterior problem. Two regularized versions are proposed and compared with the interior problem. It is found that an additional free term is present in the second regularized version of the exterior problem. An analytical solution for a benchmark example in ISBE is derived by two methods, conformal mapping and the Poisson integral formula using symbolic software. The potential gradient on the boundary is calculated by using the hypersingular integral equation except on the two singular points where the potential is discontinuous instead of failure in ISBE benchmarks. Based on the matrix relations between the interior and exterior problems, the BEPO2D program for the interior problem can be easily reintegrated. This benchmark example was used to check the validity of the dual integral formulation, and the numerical results match the exact solution well.  相似文献   

5.
In many cases, boundary integral equations contain a domain integral. This can be evaluated by discretization of the domain into domain elements. Historically, this was seen as going against the spirit of boundary element methods, and several methods were developed to avoid this discretization, notably dual and multiple reciprocity methods and particular solution methods. These involved the representation of the interior function with a set of basis functions, generally of the radial type. In this study, meshless methods (dual reciprocity and particular solution) are compared to the direct domain integration methods. The domain integrals are evaluated using traditional methods and also with multipole acceleration. It is found that the direct integration always results in better accuracy, as well as smaller computation times. In addition, the multipole method further improves on the computation times, in particular where multiple evaluations of the integral are required, as when iterative solvers are used. The additional error produced by the multipole acceleration is negligible. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, new spherical Hankel shape functions are used to reformulate boundary element method for 2‐dimensional elastostatic and elastodynamic problems. To this end, the dual reciprocity boundary element method is reconsidered by using new spherical Hankel shape functions to approximate the state variables (displacements and tractions) of Navier's differential equation. Using enrichment of a class of radial basis functions (RBFs), called spherical Hankel RBFs hereafter, the interpolation functions of a Hankel boundary element framework has been derived. For this purpose, polynomial terms are added to the functional expansion that only uses spherical Hankel RBF in the approximation. In addition to polynomial function fields, the participation of spherical Bessel function fields has also increased robustness and efficiency in the interpolation. It is very interesting that there is no Runge phenomenon in equispaced Hankel macroelements, unlike equispaced classic Lagrange ones. Several numerical examples are provided to demonstrate the effectiveness, robustness and accuracy of the proposed Hankel shape functions and in comparison with the classic Lagrange ones, they show much more accurate and stable results.  相似文献   

7.
In this work a fast solver for large‐scale three‐dimensional elastodynamic crack problems is presented, implemented, and tested. The dual boundary element method in the Laplace transform domain is used for the accurate dynamic analysis of cracked bodies. The fast solution procedure is based on the use of hierarchical matrices for the representation of the collocation matrix for each computed value of the Laplace parameter. An ACA (adaptive cross approximation) algorithm is used for the population of the low rank blocks and its performance at varying Laplace parameters is investigated. A preconditioned GMRES is used for the solution of the resulting algebraic system of equations. The preconditioners are built exploiting the hierarchical arithmetic and taking full advantage of the hierarchical format. An original strategy, based on the computation of some local preconditioners only, is presented and tested to further speed up the overall analysis. The reported numerical results demonstrate the effectiveness of the technique for both uncracked and cracked solids and show significant reductions in terms of both memory storage and computational time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a new method for determining the natural frequencies and mode shapes for the free vibration of thin elastic plates using the boundary element and dual reciprocity methods. The solution to the plate's equation of motion is assumed to be of separable form. The problem is further simplified by using the fundamental solution of an infinite plate in the reciprocity theorem. Except for the inertia term, all domain integrals are transformed into boundary integrals using the reciprocity theorem. However, the inertia domain integral is evaluated in terms of the boundary nodes by using the dual reciprocity method. In this method, a set of interior points is selected and the deflection at these points is assumed to be a series of approximating functions. The reciprocity theorem is applied to reduce the domain integrals to a boundary integral. To evaluate the boundary integrals, the displacements and rotations are assumed to vary linearly along the boundary. The boundary integrals are discretized and evaluated numerically. The resulting matrix equations are significantly smaller than the finite element formulation for an equivalent problem. Mode shapes for the free vibration of circular and rectangular plates are obtained and compared with analytical and finite element results.  相似文献   

9.
In this paper a general boundary element formulation for the three-dimensional elastoplastic analysis of cracked bodies is presented. The non-linear formulation is based on the Dual Boundary Element Method. The continuity requirements of the field variables are fulfilled by a discretization strategy that incorporates continuous, semi-discontinuous and discontinuous boundary elements as well as continuous and semi-discontinuous domain cells. Suitable integration procedures are used for the accurate integration of the Cauchy surface and volume integrals. The explicit version of the initial strain formulation is used to satisfy the non-linearity. Several examples are presented to demonstrate the application of the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
A collocation boundary element formulation is presented which is based on a mixed approximation formulation similar to the Galerkin boundary element method presented by Steinbach (SIAM J Numer Anal 38:401–413, 2000) for the solution of Laplace’s equation. The method is also applicable to vector problems such as elasticity. Moreover, dynamic problems of acoustics and elastodynamics are included. The resulting system matrices have an ordered structure and small condition numbers in comparison to the standard collocation approach. Moreover, the employment of Robin boundary conditions is easily included in this formulation. Details on the numerical integration of the occurring regular and singular integrals and on the solution of the arising systems of equations are given. Numerical experiments have been carried out for different reference problems. In these experiments, the presented approach is compared to the common nodal collocation method with respect to accuracy, condition numbers, and stability in the dynamic case.  相似文献   

11.
A new approach to steady-state rolling, with and without force transmission, based on the boundary element method is presented. The proposed formulation solves the problem in a more general way than semi-analytical methods, with which it shares some approximations. The robustness and accuracy of the proposed method is reflected in the comparative analysis of the results obtained for three different types of rolling problems involving identical, dissimilar and tyred cylinders, respectively.  相似文献   

12.
The dual reciprocity boundary element method has been successfully employed to solve general field equations posed in a closed domain, i.e. interior problems. Up to now, however, little effort has been made to extend it to exterior problems (i.e. general field equations posed in an infinite region), which are commonly encountered in engineering practice. In this paper, the interpolation functions associated with exterior problems, which were proposed by Loeffler and Mansur (in Boundary Elements X, Vol. 2, Springer, 1988), are first examined. We have found that the choice of the arbitrary constant, the inclusion of which is necessary in those interpolation functions, has clear effects on the accuracy of the numerical results. A mapping transformation, through which any exterior problem can be solved by solving an equivalent interior problem, is then proposed. Although there are certain regularity conditions attached to such a mapping, they can be easily satisfied if the unknown function satisfies certain regularity conditions at infinity in the original exterior problem. A successful application of this mapping transformation to a transient heat transfer problem demonstrates the good performance of this approach.  相似文献   

13.
The present paper shows the applicability of the dual boundary element method to analyse plastic, viscoplastic and creep behaviours in fracture mechanics problems. Several models with a crack, including a square plate, a holed plate and a notched plate, are analysed. Special attention is taken when the discretization of the domain is performed. In fact, for the plasticity and viscoplasticity cases, only the region susceptible to yielding was discretized, whereas the creep case required the discretization of the whole domain. The proposed formulation is presented as an alternative technique to study these kinds of nonlinear problems. Results from the present formulation are compared to those of the well‐established finite element technique, and they are in good agreement. Important fracture mechanic parameters like KI, KII, J‐integrals and C‐integrals are also included. In general, the results, for the plastic, viscoplastic and creep cases, exhibit that the highest stress concentrations are in the vicinity of the crack tip and they decrease as the distance from the crack tip is increased.  相似文献   

14.
This paper reports a fast convergent boundary element method on a Parallel Virtual Machine (PVM) (Geist et al., PVM: Parallel Virtual Machine, A Users' Guide and Tutorial for Networked Parallel Computing. MIT Press, Cambridge, 1994) cluster using the SIMD computing model (Single Instructions Multiple Data). The method uses the strategy of subdividing the domain into a number of smaller subdomains in order to reduce the size of the system matrix and to achieve overall speedup. Unlike traditional subregioning methods, where equations from all subregions are assembled into a single linear algebraic system, the present scheme is iterative and each subdomain is handled by a separate PVM node in parallel. The iterative nature of the overall solution procedure arises due to the introduction of the artificial boundaries. However, the system equations for each subdomain is now smaller and solved by direct Gaussian elimination within each iteration. Furthermore, the boundary conditions at the artificial interfaces are estimated from the result of the previous iteration by a reapplication of the boundary integral equation for internal points. This method provides a consistent mechanism for the specification of boundary conditions on artificial interfaces, both initially and during the iterative process. The method is fast convergent in comparison with other methods in the literature. The achievements of this method are therefore: (a) simplicity and consistency of methodology and implementation; (b) more flexible choice of type of boundary conditions at the artificial interfaces; (c) fast convergence; and (d) the potential to solve large problems on very affordable PVM clusters. The present parallel method is suitable where (a) one has a distributed computing environment; (b) the problem is big enough to benefit from the speedup achieved by coarse-grained parallelisation; and (c) the subregioning is such that communication overhead is only a small percentage of total computation time.  相似文献   

15.
A new parallel Robin-Robin adaptive iterative coupling algorithm with dynamic relaxation parameters is proposed for the boundary element method (BEM), and relaxation parameters are derived for other existing iterative coupling algorithms. The performances of the new algorithm and of the modified existing algorithms are investigated in terms of convergence properties with respect to the number of subdomains, mesh density, interface mesh conformity, and BEM element types. Results show that the number of subdomains and the refinement level of the mesh are the two dominant factors affecting the performances of the considered algorithms. The proposed parallel Robin-Robin algorithm shows the best overall convergence behavior for the tested large problems, thanks to its effectiveness in handling complex boundary conditions and large number of subdomains, thus resulting to be very promising for efficient parallel BEM computing and large coupling problems. Source code is available at https://github.com/BinWang0213/PyBEM2D .  相似文献   

16.
A new semi-analytic method for solving optical rib-type waveguide problems is presented. In the method, the cross-section of a rib-type waveguide is divided into several regions. In each region, the refractive index profile and field distribution are expanded into Fourier cosine series, and then are substituted in the wave equation. A second-order differential matrix equation is then derived for each region, with a closed-form solution obtainable. With the boundary conditions used, an eigenmode equation for the rib waveguide can be derived and solved numerically to give the modal indices. Here, the presented method is used to deal with two rib waveguides in different geometric dimensions and/or compositions, respectively. Computational results show that the presented method is quite efficient, in terms of CPU time, in finding the modal indices accurately. The relative error in computing the modal index with the method is about 10??5–10??6.  相似文献   

17.
The treatment of domain integrals has been a topic of interest almost since the inception of the boundary element method (BEM). Proponents of meshless methods such as the dual reciprocity method (DRM) and the multiple reciprocity method (MRM) have typically pointed out that these meshless methods obviate the need for an interior discretization. Hence, the DRM and MRM maintain one of the biggest advantages of the BEM, namely, the boundary-only discretization. On the other hand, other researchers maintain that classical domain integration with an interior discretization is more robust. However, the discretization of the domain in complex multiply-connected geometries remains problematic. In this research, three methods for evaluating the domain integrals associated with the boundary element analysis of the three-dimensional Poisson and nonhomogeneous Helmholtz equations in complex multiply-connected geometries are compared. The methods include the DRM, classical cell-based domain integration, and a novel auxiliary domain method. The auxiliary domain method allows the evaluation of the domain integral by constructing an approximately C 1 extension of the domain integrand into the complement of the multiply-connected domain. This approach combines the robustness and accuracy of direct domain integral evaluation while, at the same time, allowing for a relatively simple interior discretization. Comparisons are made between these three methods of domain integral evaluation in terms of speed and accuracy. This work was partially supported by the United States Department of Energy (DOE) grants DE-FG03-97ER14778 and DE-FG03-97ER25332. This financial support does not constitute an endorsement by the DOE of the views expressed in this paper.  相似文献   

18.
This study documents the first attempt to extend the singular boundary method, a novel meshless boundary collocation method, for the solution of 3D elasticity problems. The singular boundary method involves a coupling between the regularized BEM and the method of fundamental solutions. The main idea here is to fully inherit the dimensionality and stability advantages of the former and the meshless and integration‐free attributes of the later. This makes it particularly attractive for problems in complex geometries and three dimensions. Four benchmark 3D problems in linear elasticity are well studied to demonstrate the feasibility and accuracy of the proposed method. The advantages, disadvantages, and potential applications of the proposed method, as compared with the FEM, BEM, and method of fundamental solutions, are also examined and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We develop a three-dimensional shape optimization (SO) framework for the wave equation with taking the unsteadiness into account. Resorting to the adjoint variable method, we derive the shape derivative (SD) with respect to a deformation (perturbation) of an arbitrary point on the target surface of acoustic scatterers. Successively, we represent the target surface with non-uniform rational B-spline patches and then discretize the SD in term of the associated control points (CPs), which are useful for manipulating a surface. To solve both the primary and adjoint problems, we apply the time-domain boundary element method (TDBEM) because it is the most appropriate when the analysis domain is the ambient air and thus infinitely large. The issues of the severe computational cost and instability of the TDBEM are resolved by exploiting the fast and stable TDBEM proposed by the present authors. Instead, since the TDBEM is mesh-based and employs the piecewise-constant element for space, we introduce some approximations in evaluating the discretized SD from the two solutions of TDBEM. By regarding the evaluation scheme as the computation of the gradient of the objective functional, given as the summation of the absolute value of the sound pressure over the predefined observation points, we can solve SO problems with a gradient-based non-linear optimization solver. To assess the developed SO system, we performed several numerical experiments from the perspective of verification and application with satisfactory results.  相似文献   

20.
In this paper the diffusion equation is solved in two-dimensional geometry by the dual reciprocity boundary element method (DRBEM). It is structured by fully implicit discretization over time and by weighting with the fundamental solution of the Laplace equation. The resulting domain integral of the diffusive term is transformed into two boundary integrals by using Green's second identity, and the domain integral of the transience term is converted into a finite series of boundary integrals by using dual reciprocity interpolation based on scaled augmented thin plate spline global approximation functions. Straight line geometry and constant field shape functions for boundary discretization are employed. The described procedure results in systems of equations with fully populated unsymmetric matrices. In the case of solving large problems, the solution of these systems by direct methods may be very time consuming. The present study investigates the possibility of using iterative methods for solving these systems of equations. It was demonstrated that Krylov-type methods like CGS and GMRES with simple Jacobi preconditioning appeared to be efficient and robust with respect to the problem size and time step magnitude. This paper can be considered as a logical starting point for research of iterative solutions to DRBEM systems of equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号