首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the underlying assumptions in estimating cross-correlation rates between chemical shift anisotropy (CSA) and dipolar coupling mechanisms in a scalar-coupled two-spin IS system, from laboratory frame relaxation experiments. It has ben shown that for an arbitrary relaxation delay, the difference in relaxation rates of the individual components of an in-phase (or antiphase) doublet is not related to the CSA-dipolar coupling cross-correlation rate in a simple way. This is especially true in the case where the difference in the decay rates of the in-phase and antiphase terms of the density matrix becomes comparable to the magnitude of the scalar coupling between the two spins. Improved means of extracting cross-correlation rates in these cases are presented.  相似文献   

2.
Cation binding to the monovalent cation selective channel, gramicidin A, is shown to induce changes in the dipolar and chemical shift observables from uniformly aligned samples. While these changes could be the result of structural or dynamic changes, they are shown to be primarily induced by through-bond polarizability effects when cations are solvated by the carbonyl oxygens of the peptide backbone. Upon cation binding partial charges are changed throughout the peptide plane, inducing large changes in the 13C1 chemical shifts, smaller changes in the 15N chemical shifts, and even smaller effects for the 15N-13C1 and 15N-2H dipolar interactions. These conclusions are substantiated by characterizing the 15N chemical shift tensors in the presence and absence of cations in fast-frozen lipid bilayer preparations of gramicidin A.  相似文献   

3.
We propose a simple one-dimensional RF pulse sequence for the study of chemical shift and heteronuclear dipolar coupling tensors of oriented as well as unoriented solids. An off-resonance RF decoupling of protons during the signal acquisition of less sensitive nuclei is used to suppress homonuclear 1H-1H dipolar interactions. This method is experimentally demonstrated on peptide samples selectively labeled with 15N isotope.  相似文献   

4.
The principal values of the chemical shift tensors of all 13C and 15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensional phase adjusted spinning sideband (2D-PASS) and conventional CP/MAS experiments. The 13C and 15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl 13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the 13C and 15N sites and the beta-lactam ring conformation.  相似文献   

5.
A solid state NMR method is presented for determination of a backbone dihedral angle phi in peptides, being based on the previously reported method, relayed anisotropy correlation (RACO) NMR [Y. Ishii et al., Chem. Phys. Lett. 256 (1996) 133]. In the present method, the 15N-1H and the 13C-1H dipolar tensors in the 1H-15N-13C-1H system are two-dimensionally (2D) correlated via polarization transfer from 15N to 13C under magic angle spinning (MAS). This method was applied to N-acetyl[1,2-13C,15N]D,L-valine, and the H-C-N-H dihedral angle was determined to be 154.0 +/- 1.4 degrees or 206.0 +/- 1.4 degrees, the former agreeing with the X-ray value of 154 +/- 5 degrees.  相似文献   

6.
It is shown how to calculate random errors in chemical shift tensor components and in the Euler angles which fix the orientation of the sigma tensor in the molecular frame, as obtained from spinning sideband analysis of MAS NMR spectra of powdered solids, when heteronuclear dipolar coupling interactions occur in a two spin system. The procedure was applied to experimental data corresponding to the chemical shift tensor of a carbon-13 bonded to a phosphorus-31 nucleus. Clues are given concerning the experimental variables to be set in order to obtain the desired accuracy in the orientation angles.  相似文献   

7.
Proper protein chemical shift analysis requires careful experimental measurements and the implementation of standardized referencing procedures. In this article we outline the steps necessary to ensure proper chemical shift referencing and the selection criteria for choosing appropriate "random coil" amino acid chemical shift values for predicting, comparing, and assigning 1H, 13C, and 15N resonances in proteins. By making use of these standardized conditions we demonstrate how several recently developed methods, namely homologous assignment techniques and empirical chemical shift contour maps (or hypersurfaces), can significantly improve the accuracy of chemical shift prediction for 1H, 13C, and 15N nuclei. In addition to illustrating the potential utility of chemical shift prediction, we also outline procedures for identifying secondary structure elements through heteronuclear chemical shift analysis and further demonstrate how empirical shift contour maps can actually be used to refine, and more importantly generate, reasonably good three-dimensional protein structures.  相似文献   

8.
Psychologically traumatized people exhibit delayed color naming of trauma words in the emotional Stroop task. Four groups of participants were asked to color name positive words, neutral words, and trauma words; these groups included 15 women who believed that they harbored repressed memories of childhood sexual abuse (CSA), 13 women who reported recovered memories of CSA, 15 women who had never forgotten their CSA, and 12 women who had never been abused. Repressed-memory participants exhibited patterns of interference indistinguishable from those of the nonabused control group participants. Irrespective of group membership, the severity of self-reported posttraumatic stress disorder symptoms was the only significant predictor of trauma-related interference, r(48)?=?.30?, p?  相似文献   

9.
DsbA is the strongest protein disulfide oxidant yet known and is involved in catalyzing protein folding in the bacterial periplasm. Its strong oxidizing power has been attributed to the lowered pKa of its reactive active site cysteine and to the difference in thermodynamic stability between the oxidized and the reduced form. However, no structural data are available for the reduced state. Therefore, an NMR study of DsbA in its two redox states was undertaken. We report here the backbone 1HN, 15N, 13C(alpha) 13CO, 1H(alpha), and 13Cbeta NMR assignments for both oxidized and reduced Escherichia coli DsbA (189 residues). Ninety-nine percent of the frequencies were assigned using a combination of triple (1H-13C-15N) and double resonance (1H-15N or 1H-13C) experiments. Secondary structures were established using the CSI (Chemical Shift Index) method, NOE connectivity patterns, 3(J)H(N)H(alpha) and amide proton exchange data. Comparison of chemical shifts for both forms reveals four regions of the protein, which undergo some changes in the electronic environment. These regions are around the active site (residues 26 to 43), around His60 and Pro 151, and also around Gln97. Both the number and the amplitude of observed chemical shift variations are more substantial in DsbA than in E. coli thioredoxin. Large 13C(alpha) chemical shift variations for residues of the active site and residues Phe28, Tyr34, Phe36, Ile42, Ser43, and Lys98 suggest that the backbone conformation of these residues is affected upon reduction.  相似文献   

10.
The major cold-shock protein (CspA) from Escherichia coli is a single-stranded nucleic acid-binding protein that is produced in response to cold stress. We have previously reported its overall chain fold as determined by NMR spectroscopy [Newkirk, K., Feng, W., Jiang, W., Tejero, R., Emerson, S. D., Inouye, M., and Montelione, G. T. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 5114-5118]. Here we describe the complete analysis of 1H, 13C, and 15N resonance assignments for CspA, together with a refined solution NMR structure based on 699 conformational constraints and an analysis of backbone dynamics based on 15N relaxation rate measurements. An extensive set of triple-resonance NMR experiments for obtaining the backbone and side chain resonance assignments were carried out on uniformly 13C- and 15N-enriched CspA. Using a subset of these triple-resonance experiments, the computer program AUTOASSIGN provided automatic analysis of sequence-specific backbone N, Calpha, C', HN, Halpha, and side chain Cbeta resonance assignments. The remaining 1H, 13C, and 15N resonance assignments for CspA were then obtained by manual analysis of additional NMR spectra. Dihedral angle constraints and stereospecific methylene Hbeta resonance assignments were determined using a new conformational grid search program, HYPER, and used together with longer-range constraints as input for three-dimensional structure calculations. The resulting solution NMR structure of CspA is a well-defined five-stranded beta-barrel with surface-exposed aromatic groups that form a single-stranded nucleic acid-binding site. Backbone dynamics of CspA have also been characterized by 15N T1, T2, and heteronuclear 15N-1H NOE measurements and analyzed using the extended Lipari-Szabo formalism. These dynamic measurements indicate a molecular rotational correlation time taum of 4.88 +/- 0.04 ns and provide evidence for fast time scale (taue < 500 ps) dynamics in surface loops and motions on the microsecond to millisecond time scale within the proposed nucleic acid-binding epitope.  相似文献   

11.
We report the NMR resonance assignments for a macromolecular protein/DNA complex containing the three amino-terminal zinc fingers (92 amino acid residues) of Xenopus laevis TFIIIA (termed zf1-3) bound to the physiological DNA target (15 base pairs), and for the free DNA. Comparisons are made of the chemical shifts of protein backbone 1HN, 15N, 13C alpha and 13C beta and DNA base and sugar protons of the free and bound species. Chemical shift changes are analyzed in the context of the structures of the zf1-3/DNA complex to assess the utility of chemical shift change as a probe of molecular interfaces. Chemical shift perturbations that occur upon binding in the zf1-3/DNA complex do not correspond directly to the structural interface, but rather arise from a number of direct and indirect structural and dynamic effects.  相似文献   

12.
Chemical shift mapping is becoming a popular method for studying protein-protein interactions in solution. The technique is used to identify putative sites of interaction on a protein surface by detecting chemical shift perturbations in simple (1H, 15N)-HSQC NMR spectra of a uniformly labeled protein as a function of added (unlabeled) target protein. The high concentrations required for these experiments raise questions concerning the possibility for non-specific interactions being detected, thereby compromising the information obtained. We demonstrate here that the simple chemical shift mapping approach faithfully reproduces the known functional specificities among pairs of closely related proteins from the phosphoenolpyruvate:sugar phosphotransferase systems of Escherichia coli and Bacillus subtilis.  相似文献   

13.
We have developed a useful strategy for identifying amino acid spin systems and side-chain carbon resonance assignments in small 15N-, 13C-enriched proteins. Multidimensional constant-time pulsed field gradient (PFG) HCC(CO)NH-TOCSY experiments provide side-chain resonance frequency information and establish connectivities between sequential amino acid spin systems. In PFG HCC(CO)NH-TOCSY experiments recorded with a properly tuned constant-time period for frequency labeling of aliphatic 13C resonances, phases of cross peaks provide information that is useful for identifying spin system types. When combined with 13C chemical shift information, these patterns allow identification of the following spin system types: Gly, Ala, Thr, Val, Leu, Ile, Lys, Arg, Pro, long-type (i.e., Gln, Glu and Met), Ser, and AMX-type (i.e., Asp, Asn, Cys, His, Phe, Trp and Tyr).  相似文献   

14.
The mobility of the isoalloxazine ring of the prosthetic group of Megasphaera elsdenii flavodoxin was investigated by a 13C relaxation study of the non-protonated ring atoms 2, 4, 4a and 10a. In this study a selectively enriched (greater than 90% 13C) prosthetic group was bound to the apoprotein. T1 and T2 values were determined at two magnetic field strengths, i.e. 8.46 T (90.5 MHz) and 5.88 T (62.8 MHz). Values of nuclear Overhauser effects (NOE) were determined at 5.88 T. It is shown that both the dipole-dipole interaction and the chemical shift anisotropy are important relaxation sources for all the carbon atoms investigated. The results are in agreement with a spectral density function of the isoalloxazine ring in which only the overall reorientational motion of the protein is accounted for. From this it is concluded that the isoalloxazine ring is tightly associated with the apoprotein. The protein-bound isoalloxazine ring does not exhibit large fluctuations on the nanosecond time scale, although small amplitude fluctuations cannot be excluded. This information was obtained by a combination of field-dependent T1 and NOE measurements. T2 values are in agreement with these results. On the basis of the dipolar part of the overall T1 values, the distance between the carbon investigated and the nearest proton was calculated and found to be in fair agreement with the crystallographic results of the related flavodoxin from Clostridium MP. In addition, it is shown that, based on the chemical shift anisotropy as a relaxation source, information on the internal mobility is difficult to obtain. The main reason for this is the low precision in the determination of the chemical shift anisotropy tensor.  相似文献   

15.
Multidimensional heteronuclear NMR spectroscopy has been used to determine almost complete backbone and side-chain 1H, 15N, and 13C resonance assignments of calcium loaded Myxococcus xanthus protein S (173 residues). Of the range of constant-time triple resonance experiments recorded, HNCACB and CBCA(CO)NH, which correlate C alpha and C beta with backbone amide resonances of the same and the succeeding residue respectively, proved particularly useful in resolving assignment ambiguities created by the 4-fold internal homology of the protein S amino acid sequence. Extensive side-chain 1H and 13C assignments have been obtained by analysis of HCCH-TOCSY and 15N-edited TOCSY-HMQC spectra. A combination of NOE, backbone amide proton exchange, 3JNH alpha coupling constant, and chemical shift data has been used to show that each of the protein S repeat units consists of four beta-strands in a Greek key arrangement. Two of the Greek keys contain a regular alpha-helix between the third and fourth strands, resulting in an unusual and possibly unique variation on this common folding motif. Despite similarity between two nine-residue stretches in the first and third domains of protein S and one of the Ca(2+)-binding sequences in bovine brain calmodulin [Inouye, S., Franceschini, T., & Inouye, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6829-6833], the protein S topology in these regions is incompatible with an EF-hand calmodulin-type Ca(2+)-binding site.  相似文献   

16.
Procedures are described for significantly improving the sensitivity of the recently proposed TROSY (transverse relaxation-optimized spectroscopy) experiment (K. Pervushin et al., 1997, Proc. Natl. Acad. Sci. USA 94, 12366-12371). The TROSY experiment takes advantage of destructive interference between dipolar and chemical shift anisotropy relaxation mechanisms to achieve substantial reductions in resonance linewidths in heteronuclear correlation spectra; the effect is significant particularly for studies of large molecular weight systems at very high static magnetic field strengths. A (square root 2) improvement in the sensitivity of the TROSY experiment is achieved by implementation of the PEP (preservation of equivalent pathways) scheme (J. Cavanagh and M. Rance, 1990, J. Magn. Reson. 88, 72-85). An additional significant improvement in sensitivity for 15N-labeled samples in H2O solution is realized through a simple modification of the 1H-15N TROSY pulse sequence to return the water magnetization to its equilibrium position (+z axis) at the beginning of the acquisition period. Relaxation-induced imbalance between the coherence transfer pathways utilized in the TROSY refocusing period is shown theoretically and experimentally to give rise to additional unanticipated signals in TROSY spectra.  相似文献   

17.
18.
A simple and effective method is described for simultaneously measuring dipolar couplings for methine, methylene, and methyl groups in weakly oriented macromolecules. The method is a J-modulated 3D version of the well-known [1H-13C] CT-HSQC experiment, from which the J and dipolar information are most accurately extracted by using time-domain fitting in the third, constant-time dimension. For CH2-sites, the method generally yields only the sum of the two individual 13C-1H couplings. Structure calculations are carried out by minimizing the deviation between the measured sum, and the sum predicted for each methylene on the basis of the structure. For rapidly spinning methyl groups the dipolar contribution to the splitting of the outer 13C quartet components can be used directly to constrain the orientation of the C-CH3 bond. Measured sidechain dipolar couplings are in good agreement with an ensemble of NMR structures calculated without use of these couplings.  相似文献   

19.
Staphylokinase, a 15.5 kDa protein from Staphylococcus aureus, is a plasminogen activator which is currently undergoing clinical trials for the therapy of myocardial infarction and peripheral thrombosis. The three-dimensional (3D) NMR solution structure has been determined by multidimensional heteronuclear NMR spectroscopy on uniformly 15N- and 15N,13C-labeled samples of staphylokinase. Structural constraints were obtained from 82 3JHNH alpha as well as 22 3JNH beta scalar coupling constants and 2345 NOE cross-peaks, derived from 15N-edited and 13C-edited 3D NOE spectra. NOE cross-peak assignments were confirmed by analysis of ?15N,13C?-edited and ?13C,13C?-edited 4D NOE spectra. The structure is presented as a family of 20 conformers which show an average rmsd of 1.02 +/- 0.15 A from the mean structure for the backbone atoms. The tertiary structure of staphylokinase shows a well-defined global structure consisting of a central 13-residue alpha-helix flanked by a two-stranded beta-sheet, both of which are located above a five-stranded beta-sheet. Two of the connecting loops exhibit a higher conformational heterogeneity. Overall, staphylokinase shows a strong asymmetry of hydrophilic and hydrophobic surfaces. The N-terminal sequence, including Lys10 which is the site of the initial proteolytic cleavage during activation of plasminogen, folds back onto the protein core, thereby shielding amino acids with functional importance in the plasminogen activation process. From a comparison of the structure with mutational studies, a binding region for plasminogen is proposed.  相似文献   

20.
The results of heteronuclear NMR studies on the combined Src homology domains 2 and 3 (SH3-SH2) of pp60 c-Src are presented. Resonance assignments were obtained using heteronuclear triple-resonance experiments in conjunction with 15N-separated nuclear Overhauser effect spectroscopy (NOESY) data. A modified three-dimensional 13CO-15N-1H spectral correlation experiment [(HACA)CO(CA)-NH] with improved sensitivity is presented that provided additional sequential information and resolved several ambiguities. Chemical shifts and sequential- and medium-range NOE cross peaks indicate that the structures of both the SH3 and SH2 portions of the polypeptide are very similar to those of the isolated SH3 and SH2 domains. Binding of a high-affinity phosphopeptide, EPQpYEEIPIYL, induces large chemical shift changes at several locations in the SH2 domain. Comparison with known results for peptide binding to SH2 domains shows that the residues displaying the largest effects are all involved in peptide binding or undergo significant conformational changes upon binding. However, subtle changes of both 1H and 15N chemical shifts are observed for residues within the SH3 domain and the connecting linker region, indicating possible cross-domain communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号