首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
采用熔融共混法制备了聚氯乙烯/炭黑(PVC/CB)复合材料,分析了CB经KH550改性前后对复合材料性能的影响,并进一步研究了CB的用量对复合材料力学性能、体积电阻率、电磁屏蔽性能及热性能的影响。结果表明:随着CB用量的增多,复合材料的拉伸强度逐渐提高,在CB用量为25%时达到最大值,继续增大CB用量,拉伸强度降低;PVC/MCB的拉伸强度优于PVC/CB;体积电阻率则随着CB的增加逐渐降低,在CB用量达到25%时,该值突然显著降低,在复合材料内部发生了导电渗逾。PVC/MCB的电磁屏蔽性能明显优于PVC/CB复合材料,CB在25%的填充量下可以形成完善的导电网络,复合材料具有较好的电磁屏蔽性能。最终确定CB填充量为25%,可以制得综合性能优异的PVC/MCB导电聚合物屏蔽材料。  相似文献   

2.
硬质聚氯乙烯/空壳结构导电炭黑复合抗静电材料的研制   总被引:3,自引:0,他引:3  
用透射电镜 (TEM )和扫描电镜 (SEM )考察了空壳结构导电炭黑 (CB1)及实芯结构导电炭黑 (CB2 )、(CB3)对硬质聚氯乙烯 (PVC U )抗静电性能的影响 ,并对CB1表面处理剂及PVC U/CB1增韧体系进行了研究。结果表明 :采用 5~ 7质量份经表面处理的空壳结构CB1与硬质聚氯乙烯复合可使材料的表面电阻 (RS)小于 3× 10 8Ω ,再辅以阻燃和增韧体系 ,可得到综合性能优良的阻燃、抗静电PVC U材料  相似文献   

3.
在聚氯乙烯(PVC)/邻苯二甲酸二辛酯(DOP)中加入抗静电剂SAS93、抗静电剂SN、导电炭黑、乙炔炭黑等助剂,采用熔融共混法制备了抗静电软质PVC片材;采用万能试验机、高绝缘电阻测量仪、场发射扫描电子显微镜研究了抗静电剂种类和组分对PVC片材的力学性能、体积电阻、表面电阻及形貌的影响。结果表明,添加0.5份的抗静电剂SAS93或SN均可使复合材料的体积电阻和表面电阻快速下降到10~7~10~8Ω;与SAS93相比,SN对软质PVC的硬度影响基本一致,SN对复合材料的拉伸性能影响更大;在软质PVC中添加20份的乙炔炭黑或导电炭黑时才能达到体积电阻和表面电阻为10~7~10~8Ω的效果;在添加30份乙炔炭黑或导电炭黑时,软质PVC的体积电阻和表面电阻下降到10~3~10~4Ω;添加20份乙炔炭黑或导电炭黑时,复合材料的表面电阻和体积电阻发生突变,即该炭黑的逾渗阈值为20份。  相似文献   

4.
黄丽 《河南化工》2013,30(9):36-38
实验对比研究了添加白炭黑和不添加白炭黑对PVC木塑材料拉伸强度、断裂伸长率、冲击强度和耐水性的影响。研究结果表明:当白炭黑用量在10份和15份时材料的拉伸强度和冲击强度最佳,拉伸强度和冲击强度较未加时分别提高了35%和27%。添加了白炭黑后,木塑材料断裂伸长率显著提高,表现为韧性断裂,说明白炭黑起到了增强增韧的作用。但随着白炭黑添加量的提高,木塑材料的耐水性有所降低。  相似文献   

5.
采用表面电阻测试和扫描电镜,分析研究了软质聚氯乙烯(PVC)树脂与炭黑(CB)复合体系的抗静电性与炭黑含量、分布形态、PVC树脂型号及混炼塑化工艺之间的关系。结果表明:在炭黑临界添加量18%时,较短的混炼时问内,不同型号的PVC树脂基体中均能形成导电网络,体系的导电性能迅速提高,可达到抗静电的目的。相同混合和成型条件下,与SG-3树脂相比,炭黑在相对分子质量较大的SG-2基体树脂中更易形成均匀分布形态,破坏导电网络,导致电性能随混炼时间迅速下降。力学性能测试表明:炭黑的加入使复合体系的拉伸强度和断裂伸长率降低。  相似文献   

6.
采用双螺杆挤出机熔融共混,热压成型的方法制备抗静电PVC木塑复合材料。对其表面电阻、体积电阻和力学性能进行测试表征。结果表明,当导电炭黑的添加量超过14份时,复合材料电阻开始急剧下降,在含量为18份左右时已经达到抗静电材料的要求;高分子抗静电剂ATMER129的加入使得复合材料表现出较好的抗静电性能,随着添加量的增加材料的表面电阻呈下降趋势,当含量到达10份时,复合材料的体积电阻率迅速下降;力学性能分析表明:当炭黑添加量超过12份时,复合材料的弯曲强度和冲击强度明显下降;ATMER129对复合材料冲击强度影响不大,弯曲强度则随着用量的升高而降低。  相似文献   

7.
研究了利用废旧软聚氯乙烯回收料(旧料)生产PVC塑料防水卷材的配方及其对卷材拉伸性能的影响。结果表明,PVC塑料卷材的拉伸强度和断裂伸长率随PVC树脂添加比例增加而提高,而相同添加量的SG-3型PVC树脂比SG-5型PVC树脂的拉伸性能高;在试验范围内,增塑剂用量增加,卷材的拉伸强度降低,伸长率先升后降;添加CPE能提高PVC卷材伸长率,但拉伸强度有所下降。当CaCO_3用量低于20份时,卷材的拉伸强度和伸长率随CaCO_3添加量增加而提高。PVC防水卷材的优选配方(质量份):旧料85份,PVC树脂(SG-3型)15份,DOP 5份,CPE 3份,稳定剂(TLS)0.6份,其它助剂适量。  相似文献   

8.
采用熔融共混及热压交联的方法制备了新型附件半导电屏蔽材料三元乙丙橡胶(EPDM)/碳黑(CB)-石墨烯(GNS)和三元乙丙橡胶(EPDM)/碳黑(CB)-超导电炭黑(360G)。研究结果表明:加入GNS和360G都能显著提升复合材料的电学性能,且加入360G的效果更佳;与此同时,360G的加入还可以提高复合材料的力学性能。当炭黑和360G的添加量分别为15%和10%时,复合材料的体积电阻率仅为80Ω·cm,拉伸强度为15. 5 MPa,断裂伸长率为330. 3%,压缩永久变形为13%,这些性能均达到GB/T18890. 3的要求。  相似文献   

9.
采用共混的方法制备了PVC/聚酰亚胺(PVC/PI)复合材料,考察了PI的分子质量和添加量对复合材料冲击性能、拉伸性能、耐热性能和阻燃性能的影响。结果表明:当低分子质量PI的添加量为0.1份时,PVC/PI复合材料的综合性能较好。  相似文献   

10.
LDPE/SEBS/CB电致形状记忆复合材料的结构与性能   总被引:1,自引:0,他引:1  
通过熔融共混法将热塑性弹性体氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)和低密度聚乙烯(LDPE)制成形状记忆聚合物(SMP)材料;在SMP材料中填充导电炭黑(CB),制成具有电致形状记忆特性的LDPE/SEBS/CB复合材料。通过SEM、DSC分析和力学性能、电性能、记忆性能测试,研究了CB含量对电致SMP材料结构与性能的影响。结果表明:当CB含量达到20%时,LDPE/SEBS/CB复合形状记忆材料的体积电阻率降至103Ω·cm左右,CB的导电网络趋于稳定;并且LDPE/SEBS/CB(2:2:1)复合形状记忆材料的形状固定率约90%,常温拉伸和高温拉伸时均表现出较高的形状回复率(约90%),拉伸模量约170MPa,拉伸强度约9.5MPa,断裂伸长率约400%。  相似文献   

11.
Rigid and conductive poly(vinyl chloride) (PVC)/carbon black (CB) composites were prepared in a Haake torque rheometer. The results illustrate that the fusion torque of the PVC/CB composite is increased as the amount of CB is increased. Both the fusion percolation threshold and the fusion time of PVC/CB composites are decreased when the amount of CB is increased. Two major weight loss stages are observed in the TGA curve of PVC/CB composite. The first thermal degradation onset temperature (Tonset1) of PVC/CB composite is decreased as the amount of CB is increased. Both the first and second weight loss stages (ΔY1 and ΔY2) of PVC/CB composites are decreased as the amount of CB is increased. The surface resistivity of PVC/CB composite remains almost constant up to 6 parts per hundred unit weight of resin (phr) CB. When the amount of CB in PVC/CB composite is increased from 6 to 15 phr, the surface resistivity of PVC/CB composite is dramatically decreased from 1010 Ω/sq to 104 Ω/sq. Because of the addition of CB, the rigidity of PVC/CB composite is increased and thus the mechanical properties, such as yield strength, tensile strength, and the Young's modulus, are improved. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

12.
范汝良  胡成泉 《弹性体》1995,5(1):23-26
研究了PVC和白炭和黑对热力学不相容的NBR/PVC并有耐磨和耐疲劳性的影响,并探讨了其相应机理,借助扫描电镜(SEM)观察了并用体系的屈挠疲劳断面,发现随PVC用量增加和白炭黑用量减少,疲劳断面由原来的粗糙孔洞(Coarse-hole)裂纹型变成了波浪河流(Wave-river)型,并用体系优异的耐磨和耐疲劳性是由其相容性和界面过渡层结构等决定的。  相似文献   

13.
Nanoparticles (NP) filled permanently antistatic poly(vinyl chloride) (PVC) composites, constituted of dibutyl phthalate (DBP) and antistatic plasticizer (AP) which included bis[2‐(2‐methoxyethoxy)ethyl]phthalate doped with sodium perchlorate (NaClO4), were prepared in a Haaka torque rheometer. Surface resistivity measurement, mechanical test, scanning electron microscopy (SEM) investigation, and thermal gravimetric analysis (TGA)‐differential scanning calorimetry (DSC) analysis were used to investigate the comprehensive properties of PVC/AP/NP (100/40/x) (A40/NP) and PVC/AP/DBP/NP (100/40/40/x) (A80/NP) composites. The results demonstrated that the surface resistivity of A40/NP composites was lower than that of pure A40 composites at a humidity of 60% and 0.1% as the nano SiO2 or TiO2 content is 2 phr, respectively. Moreover, the surface resistivity of A40 composites was decreased by about half an order of magnitude even at the humidity of 0.1% when 2 phr of NP was added. The surface resistivity of A80/NP composites achieved the optimum value as the SiO2 and TiO2 content were 1 phr and 2 phr, respectively. Because the DBP functioned as small molecule plasticizer which endowed PVC composites with comparatively large free volume, the surface resistivity of A80/NP composites is much lower than that of A40/NP composites. The tensile strength and elongation at break of A40/NP (100/2) and A80/NP (100/2) were increased to some extent with respect to pure PVC/AP composites. DSC‐TGA analysis and rheological properties demonstrated that NP filled PVC composites processed good thermostability and thermoprocessability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Poly(vinyl chloride) (PVC)/thermoplastic polyester elastomer (Hytrel) blend system prepared in 50/50 composition was found to have the highest possible percentage elongation-at-break. This is due to better molecular compatibility between the two; however, they had lower strength and modulus values. In order to improve the strength and modulus property, alumina nano-particles were added as a reinforcing agent in concentrations as 1, 3, 5, and 7 phr in the blend system. The prepared nanocomposites were characterized for mechanical, thermal, rheological, morphological, and electrical properties. The 5-phr nano-alumina loaded PVC/Hytrel blend had optimal improvement in its strength values, but above that concentration nano-alumina started forming aggregates as was apparent from scanning electron microscopy (SEM) analysis. SEM images showed uniform distribution of nano-alumina in both PVC and Hytrel phases of the blend. Tensile strength and modulus were found to have increased by about 20 and 97 %, respectively, whereas elongation at maximum load decreased by 50 %, indicating the effect of nano-alumina as a reinforcing agent in the PVC/Hytrel system. The glass transition temperature, onset degradation temperature, viscosity, surface resistivity and volume resistivity increased, whereas degradation weight loss (%) decreased with increase in nano-alumina concentration in PVC/Hytrel blend system. No chemical interaction happened between PVC, Hytrel or alumina nano-particles, as proved by FTIR analysis.  相似文献   

15.
Ion‐conductive plasticizers (ICP) composed of dibutyl phthalate (DBP) and butyl 2‐poly(ethylene glycol) phthalate (BPEGP)/lithium bisoxalato borate (LiBOB) were successfully synthesized. The composites blended of poly(vinyl chloride) (PVC) and ICP were fabricated in a Haake torque rheometer. FTIR, surface resistivity measurement, and mechanical test were used to investigate the comprehensive properties of the PVC/ICP composites. The results show that all the synthesized ICP can reduce the surface resistivity of the PVC/ICP composites to 105 Ω sq?1 orders of magnitude as the content of ICP reaches 50 phr. The increasing temperature enhances both the mobility of PEG molecular chains and the diffusion of lithium cations, and thus effectively improves the antistatic ability of the PVC/ICP compounds. With two exceptions of PVC/ICP compounds which include those made of PEG800 and PEG1000, the temperature dependence of the surface resistivity of PVC/ICP does not obey the Arrhenius relationship. The introduction of ICP into PVC matrix would improve the antistatic ability of the composites remarkably. Meanwhile, the mechanical properties of the composites are reduced to some reasonable extent. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

16.
利用超声作用制备粒径为10μm,平均厚度约为100nm的纳米石墨微片(nano-Gs),然后采用无钯无SnCl2化学镀铜新工艺对nano-Gs表面进行化学镀铜。通过熔融共混法制备聚氯乙烯(PVC)/镀铜nano-Gs和PVC/导电炭黑(CB)/镀铜nano-Gs复合材料。结果表明,当镀铜nano-Gs含量达到逾渗阈值12%(质量分数,下同)时,PVC/镀铜nano-Gs复合材料的体积电阻率达到了最低值104Ω·cm,但其拉伸强度及缺口冲击强度较纯PVC均有所下降;当镀铜nano-Gs含量达到10%,CB含量达到2%时,PVC/CB/镀铜nano-Gs的体积电阻率达到了最低值103Ω·cm,比PVC/镀铜nano-Gs降低了一个数量级,且其拉伸强度及缺口冲击强度较纯PVC均有所提高。  相似文献   

17.
Electrically conductive acrylonitrile‐butadiene rubbers (NBRs) containing carbon black (CB) as conductive filler were prepared in order to investigate their electrical and mechanical properties. The effects of conductive CB loading, temperature, acrylonitrile content, crosslinking density of vulcanizates, and plasticizer on conductivity were studied. The change in electrical conductivity of NBRs with different amounts of CB showed that there is a certain critical point (percolation threshold) where a significant decrease in electrical resistivity (increase in conductivity) is observed. Mechanical properties such as tensile strength, elongation to break, and surface hardness of vulcanized NBRs were measured. It was found that the percolation threshold was 5 phr of CB for the NBR/CB composites. J. VINYL ADDIT. TECHNOL., 13:71–75, 2007. © 2007 Society of Plastics Engineers.  相似文献   

18.
In this study, ethylene propylene diene terpolymer (EPDM) is melt‐mixed with multiwalled carbon nanotube (MWCNT). To realize full‐scale application of MWCNT to the rubber industries, the effect of melt‐processing parameters on the surface resistivity in the rubber/MWCNT nanocomposites should be well understood. The effect of rotor speed, mixing temperature, and annealing time on the surface resistivity of the EPDM/MWCNT nanocomposites has been investigated. The surface resistivity of EPDM/MWCNT nanocomposites with 3 phr MWCNT increases with increasing the rotor speed and decreasing the mixing temperature. Tensile strength and tensile modulus of EPDM/MWCNT (3 phr) nanocomposites are higher than those of EPDM, respectively. For the nanocomposite with 3 phr MWCNT loadings, surface resistivity increases as the annealing time at room temperature increases. This is the first report that surface resistivity of rubber/MWCNT nanocomposites increases significantly on annealing at room temperature. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40129.  相似文献   

19.
An eco‐friendly citrate electrolyte‐based antistatic plasticizer (CEAP) consisting of sodium thiocyanate‐doped tris(2‐butoxyethyl) citrate was successfully synthesized using a typical esterification reaction between citric acid and 2‐butoxyethanol. Poly(vinyl chloride) (PVC)/CEAP composites were then prepared in a Haake torque rheometer. Fourier transform infrared spectroscopy was used to confirm both the structure of the synthesized CEAP and the coordination effects between the doping salt and CEAP. The dependence of the conductivity of the synthesized CEAP on temperature and concentration of the doping salt was investigated. The surface resistivity and mechanical properties of the PVC/CEAP composites were also studied. The results showed that the surface resistivity of the PVC/CEAP composites could be effectively reduced to the order of 107Ω sq?1 when the CEAP content reached 80 phr. The surface resistivity of the composites still reached 108Ω sq?1 even at a relative humidity of 12%, showing an excellent electrostatic discharge (ESD) capacity. The fabricated composites with good ESD capacity also had a tensile strength of 10 MPa and an elongation at break of 400%, which could satisfy requirements for packaging applications or similar usages. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号