首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
ABSTRACT

Pine sapwood was dried in an air convection kiln at temperatures between 60-80 °C. Temperature and weight measurements were used to calculate the position of the evaporation front beneath the surface. It was assumed that the drying during a first regime is controlled by the heat transfer to the evaporation front until irreducible saturation occurs. Comparisons were made with CT-scanned density pictures of the dry shell formation during initial stages of drying of boards.

The results indicate a receding evaporation front behaviour for sapwood above approximately 40-50% MC when the moisture flux is heat transfer controlled. After that we finally reach a period where bound water diffusion is assumed to control the drying rate.

The heat transfer from the circulating air to the evaporation front controls the migration flux. In many industrial kilns the heating coils therefore have too small heat transfer rates for batches of thin boards and boards with high sapwood content.  相似文献   

2.
《Drying Technology》2008,26(4):476-486
The objective of this work was the experimental and theoretical study of sawdust drying, in batch and continuous experiences, using a pulsed fluidized bed dryer.

In the batch experiences, a 23 factorial design was used to determine the kinetics of drying, the critical moisture content, and the effective coefficients of both diffusivity and heat transfer, all of them as a function of the velocity and temperature of the air, the speed of turning of the slotted plate that generates the air pulses in the dryer, using sawdust with 65% moisture in each run.

In the continuous operation, a 23 factorial design was used to study the effect of the solid flow and the velocity and temperature of the air on both the product moisture and the distribution of residence times. In order to determine these last ones, digital image processing was used, utilizing sawdust colored by a solution of methylene blue as tracer.

The statistically significant factors were the velocity and the temperature of the heating air, for both the continuous and batch operations. Although the speed of turn of the slotted plate was not significant, it was observed that the air pulses increased the movement of particles, facilitating its fluidization, especially at the beginning of drying.

The heat transfer coefficients were adjusted according to the equation Nu = 0.0014 Rep1.52, whose standard deviation of fit is 0.145.

The period of decreasing rate was adjusted to several diffusivity models, giving the best fit the simplified variable diffusivity model (SVDM). The curve of distribution of residence times was adjusted using the model of tanks in series, with values between 2.6 and 5 tanks.  相似文献   

3.
The commercial finite element code FEMLAB was used to perform two-dimensional axisymmetric simulations of the temperature profiles and the moving front velocities of standard BSA (bovine serum albumin)-based formulations used to stabilize pharmaceutical proteins during the freeze-drying process. The simulations were validated with both experimental and numerical approaches.

In an initial step, the heat transfer phenomena taking place during the cooling of liquid solutions was studied in commercial size glass vials without freezing or sublimation.

Then, this model was extended and validated for the freezing process of aqueous BSA-based solutions encountered in the industrial freeze-drying processes with the same vials in order to confirm the identified values of the different thermal conductances between the product and the shelf and between the product and the surroundings.

Finally, the conductances between the product and the shelf and between the vial and the surroundings thus determined were used in a dynamic sublimation model with two zones and a moving sublimation front similar to the ones previously proposed in the literature.

The simulations showed a satisfactory agreement between experimental and simulated data.

The results of this study demonstrated that the freeze-drying process of pharmaceutical proteins in glass vials for standard industrial operating conditions was mainly controlled by the heat transfer from the shelf and the surroundings to the product sublimation front.  相似文献   

4.
W. Blumberg 《Drying Technology》1994,12(6):1471-1484
When regarding the atmospheric contact drying of granular beds wetted with a liquid mixture, both the drying rate and the selectivity of the process, i.e. the change of moisture composition, are of interest. The batch drying of a free flowing ceramic substance, wetted with a 2-propanol-water mixture, is investigated in a rotary dryer with heated wall and air flow.

The theoretical analysis is based on physical models for heat and mass transfer, moisture migration and particle transport, which are presented in examples.

The experimental and theoretical results show that higher selectivities can be achieved by reducing the particle size because of the lower liquid-phase mass-transfer resistance. An increase of the rotational speed leads to a higher drying rate with slightly decreased selectivity if the particles are sufficiently small, since contact heat transfer is enhanced.  相似文献   

5.
Compounded boundary-valued problem of the diffusion-filtering heat and mass transfer with arbitrary dimensions of the transfer potential vector was raised and solved based on the theory of short-term contact between the moist material and heat-transfer surface.

The boundary lines of the application of the short-term contact models were established.

The solution of the problem allows to select the directions of the intensification of the drying processes with short-term contact of the phases and to calculate various technological characteristics of the drying processes.  相似文献   

6.
High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapour, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs, As the surface becomes dry, the drying front moves towards the centre of the particle and an overpressure is simultaneously built up which affects the drying process

The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in Dure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.  相似文献   

7.
A nonequilibrium distributed parameter model for rotary drying and cooling processes described by a set of partial differitial equations with nonlinear algebraic constraints is developed in this work. These equations arise from the multi-phase heat and mass balances on a typical rotary dryer. A computational algorithm is devekped by employing a polynonial approximation ( orthogonal collocation) with a glotal splinc technique leading to a differential-algebraic equation ( DAE) system. The numerical solution is carried out by using a standard DAE solver.

The two- phase-flow heat transfer coelficient is computed by introducing a correction factor to the commonly accepted correlations. Since interaction between the falling particles are considered in the correction factor,the results are more reliable than those computed by assuming that heat transfer between a single falling particle and the drying air is unaffected by other particles. The heat transfer computations can be further justified via a study on the analogies between heat and mass transfer.

The general model devloped in this work is mathematically more ritorous yet more flexible that the lumped parameter models established by one of the authors (Douglas et al., (1993)). The three major assumptions of an equilibrium operation, perfect mixing and constant drying raic, are removed in the distributed parameter model.

The simulation results are compared with the operational data from an industrial sugar dryer and predictions from earlier models. The model and algorithm successfully predict the steady state behaviour of rotary dryers and collers. The generalized model can be applied to fertilizer drying processes in which the assumption of constant drying rate is no longer valid and the existing dynamic models are not applicable.  相似文献   

8.
Numerical simulation of grain drying in a vertical cylindrical bed has been carried out with an imposed hot air flow and a conductive heat flux at the wall.

The model equations are numerically solved using a finite volume method. The numerical simulation gives the time and space evolution of temperature when the lateral area of the cylinder is heated by a constant density flux and a constant temperature. The influence of different parameters (essentially the ratio of heat flux to the heat capacity of flow, and the dryer geometry) on the relative moisture content and the drying time is examined.  相似文献   

9.
The basic differential equations controlling the temperature and concentration field in a single packed bed of fine particles were derived and solved for the general case in which unsteady, two-dimensional heat and mass transfer lakes place with an endothermic process.

The time-change of particle- and fluid-temperature and concentration of water vapor (humidity) were calculated by a numerical method which assumed that the rate of the endothermic process can be expressed by a first-order rate equation and that the fluid flowing through the bed is of the piston flow type.

The experiments were conducted for the drying of silica-gel and the two-stage dehydration reaction of natural gypsum to demonstrate the applicability of the present theoretical analysis.

It has been found that the calculated results show satisfactory agreement with the measured data within the range of the experimental conditions employed.  相似文献   

10.
The internal insulation in shell type power transforms is usually ensured by the stacking of plates of board impregnated with oil. A board is in equilibrium with the atmosphere at a moisture content varying from seven to eight percent by weight, but, when the insulating function is required, the water content must be lower than 0.5 %. The aim of the present work is the understanding and the modelling of transformer boards drying.

The first part of this work presents experimental studies showing that the drying of transform board follows two regimes :

- a fast regime in the fim period

- a slow regime, up to 99 percent of dryness.

The effect of heating and the influence of the board thickness on the drying rate also studied. In the second part of this paper, we presnt a model capable to represent the observed kinetics of transformer board drying. This model is based on the diffusion of water vapour in the gaseous phases combined with the transfer of water vapor from the fibres to the -us phase. The due of the average global transfer coefficient can be deduced from the slope of the curve 1 f(drying time), where x  相似文献   

11.
Drying subbituminous coal has never been practiced commercially. The commercial dryers built to date have been designed for drying surface moisture in conjunction with upstream coal preparation facilities. This type of drying is mainly controlled by input energy and the basis of the design is an energy balance. In drying inherent moisture from subbituminous coal, the thermal conductivity of the coal and the diffusion of molecular water within coal particles impose limitations on the process conditions. Energy input and solids residence time in the dryer have to be controlled properly for simultaneously balancing the heat and mass transfer within the coal particles. Improper control of either parameter can cause fires and explosions during the key steps of the drying process—drying and cooling

In parallel to the Anaconda coal drying pilot plant program, a cross-flow, fluid-bed coal drying/cooling process simulator was developed for: (1) understanding the drying phenomena on an individual particle basis; (2) analyzing potential risks and safety limits, and (3) designing the Anaconda pilot plant program

The development of the process simulator was based on both first principles and laboratory data and can be divided into two phases:

1 Development of a semi-mechanistic drying model for Powder River Basin subbituminous coal employing an analytical solution of the diffusion equation

2.Formulation of a fluid-bed cross-bed cross-flow dryer/cooler simulator employing simultaneous heat and mass transfer

This model was validated against process variables data taken on a 4 tph pilot plant. An operable range, or process envelope, has been developed through the pilot plant experience and the process simulation study. Based on the model predictions, an uncertainly range was defined in the design recommendations of a pioneer coal drying plant in scale-up.  相似文献   

12.
13.
In malt production drying operation plays an important role in the total processing cost, however there are not many studies on malt drying modeling and optimization.

In this paper a deep layer malt drying mathematical model in the form of four partial differential equations is presented.

To determine drying constants, malt thin layer drying experiments at several air temperatures and relative humidities were made.

The model were validated at industrial scale. The greatest energy savings, approximately 5 5% in fuel and 7.5% in electric energy, were obtained by an additional (and increased) air recirculation, which is carried out during the last 6 hours of the drying process and a significant decrease of air flow-rate during the last 6 hours of the drying process.  相似文献   

14.
A mathematical model simulating the heat and mass transfer process during high intensity drying of paper and board has been developed. The model is successful in predicting the vapor pressure developments, pressure driven bulk flow of liquid and vapor, and increased drying rates during high-intensity drying, closely matching the experimental determination.

The model predicts substantial amounts of water removal in the liquid form during high-intensity drying being pushed out of the web by pressurized vapor zone. Water removal by pressure flow of liquid could account for as much as one-third of the total water removed.

Similar to drying under conventional conditions, the existence of a dry zone, wet zone and an intermediate zone with accompanying advancing heat pipe has also been shown for drying under high intensity conditions.  相似文献   

15.
Collision of droplets; counter-current spray dryer; drying rate; heat transfer; nonphosphated detergent; spray drying

The spray drying method of non-phosphated granular detergents is studied to decrease the amount of agglomerate particles. The formation of agglomerates is mainly influenced by the concentration of droplets in spray cloud and the water content of droplets at the time of collision. The overlaps of different spray clouds should be de- creased.

The drying rate near the nozzle zone is considerably faster than that calculated by Ranz-Marshal's equation. According to these phenomena, “Multi-stage spray drying” is developed, which is characterized by in stalling plural spraying stages in a spray dryer.

Consequently, non-phosphated detergents are manufactured with the same powder properties and productivity as phosphated detergents.  相似文献   

16.
The process of evaporation from flat and cylindrical surfaces into an air stream flowing tangentially to them has been experimentally investigated. An electric field has been induced in the system from an emitting electrode in the form of needles arranged in a plate placed above the grounded water surface. A decisive effect of the ion-drag force on the evaporation process has been confirmed in the experiments proving that the ionic wind had intensified the process. About 8-fold increase in the average values of the heat and mass transfer coeficients caused by an electric field of an intensity 5 kV/cm in comparison with those obtained without the field has been observed. General correlations relating the evaporation rate to the process parameters have been suggested.

The system under consideration can be treated as a model one for a solid dried at a constant rate period. The drying experiments with a kaolin plate have been carried out under conditions corresponding to those applied in water evaporation from a flat surface to provide the same values of the heat and mass transfer coefficients. Intensification of the drying process by the electric field, similar to that of water evaporation, has been recorded.  相似文献   

17.
One of possibilities to extend operating efficiency of spray dryers is to increase turbulence of the drying agent flow. In the literature no quantitative data describing this phenomenon are available.

In the paper results of experimental investigations on the effect of turbulence on heat and mass transfer during atomization are discussed. The scope of experiments covered the analysis of changing evaporation capacity. temperature of gas and atomized material and particle size distribution as a function of distance to the atomizer. It was proven that an increase of air flow turbulence could cause 20-25% increase of evaporation capacity.  相似文献   

18.
A comparison was made between alternate air conditioning methods used to dry large round forage bales. Energy consumption durin drying and the final nutritional qualit of the bales were measured durin ti% study. The methods used to increase tge drying potential of the air incfuded using a desiccant to dehumidify the drying air; a gasoline engine to drive the fan and heat the drying air and the use of direct electric heat to increase the temperature of the dr ing air.

The results from the study indicate that the energy consumption was least with the use of a desiccant but the regeneration ma only be economically feasible where waste heat is available to provide tKe enery The gasoline engine was less efficient than the application of electric;. No difference in the nutritional quality of the forage due to heat damage during the drying process was noted.  相似文献   

19.
Heat/mass transfer by air flow over a sample stack of planks is studied numerically. For the simulations, the low Re k-epsilon turbulence model and bounded QUICK scheme are used. The calculated Nusselt numbers are in good agreement with the experimental data

The results of our study show that the low Re turbulence models have advantages over the conventional high Re models for this type of industrial application. This is mainly due to the small height of separation bubbles resulting from the selected large blockage ratios (more than 50 percent) occurring in such flows

Numerical simulations were carried out to study the effect of the vertical air gap due to shrinkage and non uniform sawing as well as the non uniformity in the height of boards on the flow field and heat/mass transfer characteristics. The results show that the selected gap size significantly affects the local and average Nu numbers across the stack. We have suggested optimum gap sizes for maximum heat/mass for different flow velocities (Re numbers).  相似文献   

20.
The objective of this work has been to basically elucidate the drying characteristics of an optically semitransparent material by combined radiative and convective heating. The experiments were conducted for a graphite suspension, a slurry of surplus activated sludge and a wet silica sand. The time-change of the drying rate as well as of the surface temperature of the brimfully wet material layer were measured under the step heating conditions using an infrared lamp bundle and a blast of hot air heated by an electric heater.

The experimental data obtained show satisfactory agreement with the calculated results from unsteady heat and mass transfer equations derived on the basis of a semitransparent drying model during the preheating and the constant drying rate periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号