首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wastewater and drinking water disinfection are typically achieved via chlorination, ozonation, or UV irradiation. However, there has been increased interest in recent years in alternative disinfectants. This interest came about primarily as a result of concerns over the toxicological effects of disinfection by-products created by conventional disinfection processes and the resistance of some recalcitrant microorganisms to these disinfectants. The work reported herein represents an investigation of the effect of an alternative disinfectant, gamma radiation, on the viability of three important waterborne microorganisms. Escherichia coli, coliphage MS-2, and Cryptosporidium parvum were chosen for this investigation as representative bacterial, viral, and protozoan microorganisms, respectively. A 60Co irradiator was used to expose test microorganisms to a controlled radiation dose. Experiments were performed for each of the test microorganisms to evaluate the effect of dissolved oxygen concentration and carbonate alkalinity on inactivation efficiency. For each microorganism, a strong effect of dissolved oxygen was observed, regardless of alkalinity. A subtle effect of alkalinity was observed for E. coli and coliphage MS-2, but only in air-saturated solutions. No significant alkalinity effect was observed for Cryptosporidium parvum. Inactivation kinetics were modeled for E. coli and coliphage MS-2 using single-target theory to calculate an inactivation rate constant. Multitarget theory was used to represent the inactivation response of Cryptosporidium parvum. The inactivation models based on target theory were found to provide suitable representations of experimental observations.  相似文献   

2.
Various empirical and probabilistic kinetic inactivation models that can be used to assist in the design and analysis of potable water disinfection systems were reviewed. Models were derived for both disinfectant demand-free and demand conditions. Ozone was used to inactivate heterotrophic plate count bacteria that were grown in natural water under low nutrient conditions and enumerated using R2A agar at 20°C for 7 days. Experiments were conducted at 22°C in 0.05 M (pH 6.9) phosphate buffer in bench-scale, batch 250 mL reactors. This disinfection data set, characterized by tailing-off behavior, was used to assess Chick–Watson, Hom-type, Rational, Hom–Power law, and Selleck model fit to the observed logarithmic survival ratios. It was found that the Chick–Watson model did not adequately represent the ozone disinfection kinetics. A Hom-type model incorporating a first-order disappearance term for ozone residual was found to best describe the observed inactivation of heterotrophic plate count bacteria. Named the incomplete gamma Hom model, it was found to be a robust kinetic model. The proposed incomplete gamma Hom model can be used to generate simple design charts for a wide range of disinfectant types, organisms, and conditions, as an aid to the design of water disinfection systems.  相似文献   

3.
Lunar in situ resource utilization (ISRU) processes require thermal energy at various temperatures. Chemical recovery processes (pyrolysis, gas-solid reactions, gas-liquid or three-phase reactions and desorption) require thermal energy at temperatures from 1,000?K?to?2,500?K. Manufacturing processes (hot liquid processing, sinter forming, composite forming, welding, etc.) can be accomplished with thermal energy at temperatures 1,200?K–1,800?K. For these materials, process applications or solar thermal power can be effectively utilized. Physical Sciences Inc. has been developing an innovative solar power system in which solar radiation is collected by the concentrator, which transfers the concentrated solar radiation to the optical waveguide transmission line made of low loss optical fiber. In this paper, we will review our work on the development of the solar thermal power system and its application to a lunar ISRU process.  相似文献   

4.
BACKGROUND: Many Legionella infections are acquired through inhalation or aspiration of drinking water. Although about 25% of municipalities in the USA use monochloramine for disinfection of drinking water, the effect of monochloramine on the occurrence of Legionnaires' disease has never been studied. METHODS: We used a case-control study to compare disinfection methods for drinking water supplied to 32 hospitals that had had outbreaks of Legionnaires' disease with the disinfection method for water supplied to 48 control-hospitals, with control for selected hospital characteristics and water treatment factors. FINDINGS: Hospitals supplied with drinking water containing free chlorine as a residual disinfectant were more likely to have a reported outbreak of Legionnaires' disease than those that used water with monochloramine as a residual disinfectant (odds ratio 10.2 [95% CI 1.4-460]). This result suggests that 90% of outbreaks associated with drinking water might not have occurred if monochloramine had been used instead of free chlorine for residual disinfection (attributable proportion 0.90 [0.29-1.00]). INTERPRETATION: The protective effect of monochloramine against legionella should be confirmed by other studies. Chloramination of drinking water may be a cost-effective method for control of Legionnaires' disease at the municipal level or in individual hospitals, and widespread implementation could prevent thousands of cases.  相似文献   

5.
Ultraviolet (UV) disinfection of greywater has a number of advantages for small scale applications, but the UV disinfection efficiency can be impeded by high levels of particulates and chemicals in the greywater, micro-organism aggregation, and the geometry between the UV lamp and surrounding sleeve leading to suboptimal flow paths through the lamp assembly. Most process models for UV systems are empirical in nature and do not adequately represent the distribution of UV dose that is actually delivered to micro-organisms in a continuous flow system. This paper presents a model which incorporates: (1) variations in micro-organism sensitivity to UV radiation, (2) the variation of dose received in the UV reactor chamber, and (3) the shielding effect of part of the micro-organism population by the presence of particulates. The model is capable of predicting the asymptotic decay observed in bacterial survival curves when organisms are exposed to a UV dose in a greywater matrix and has been calibrated using experimental data on a series of synthetic greywaters of differing composition and validated against a series of real greywater samples. The model compares favorably to other UV disinfection models and allows the influence of water quality parameters such as turbidity, suspended solids, and UV absorbance to be examined. This allows water quality limits to be defined beyond which the UV disinfection of greywater becomes ineffective. Acceptable performance criteria are established for low power UV systems for the treatment of greywater, which have implications for the selection of suitable annular UV reactors.  相似文献   

6.
Bromodichloromethane (BDCM) is a disinfection by-product of drinking water chlorination and is the second most common trihalomethane (THM) in finished drinking water. THMs have generally been administered to experimental animals in corn oil, rather than drinking water, which can influence the site and magnitude of toxicity. To examine the effects of gavage vehicle on the acute renal and hepatic toxicity of orally administered BDCM, 95-day-old male F344 rats were given single doses of 0, 200, or 400 mg BDCM/kg in corn oil or an aqueous 10% Emulphor solution. Activities of serum hepatoxicity indicators were significantly greater 48 hr after administration of 400 mg BDCM/kg in corn oil compared to the aqueous vehicle, but delivery of the low dose in either dosing vehicle had little effect on serum enzymes. In contrast, significant elevations in urinary renal toxicity indicators were noted at 200 and 400 mg BDCM/kg in both vehicles after 24 hr, indicating that the kidney is more sensitive to low doses of BDCM than the liver. Significantly greater increases were observed in urinary indicators after delivery of 200 mg BDCM/kg in 10% Emulphor compared to corn oil. However, administration of the high dose in corn oil resulted in greater nephrotoxicity than in the aqueous vehicle. Significant interactions between vehicle of administration and BDCM dose observed for both urinary and serum parameters further indicate that vehicle differences noted in BDCM acute toxicity are dose dependent. This observation may be due to pharmacokinetic differences in gastrointestinal rates of absorption of BDCM from corn oil as compared to an aqueous solution.  相似文献   

7.
Predicting Chlorine Residuals and Formation of TTHMs in Drinking Water   总被引:1,自引:0,他引:1  
Chlorination is the most widely practiced form of disinfection in the United States. It is highly effective against most microbiological contaminants. However, there is concern that the disinfection by-products (DBPs) formed by the use of chlorine might be carcinogenic. One class of DBPs that are formed and the only class of DBPs that currently are regulated are total trihalomethanes (TTHMs). Therefore, much effort is being expended in developing models that can be used to predict both TTHMs and chlorine residual levels in treated drinking water. This paper presents a model that predicts both TTHMs and chlorine residuals based on the consumption of chlorine and can be used to assist in evaluating the complex balance between microbial and DBP risks associated with disinfecting drinking water with chlorine. The parameters of the model have been found to be functions of total organic carbon, pH, temperature, and initial chlorine residual level. Bromide and the subsequent formation of brominated by-products were not considered in this paper.  相似文献   

8.
Ozone inactivation of Cryptosporidium parvum oocysts was studied at bench-scale in 0.05 M phosphate buffer at 1 to 37°C, pH 6–8. Animal infectivity using neonatal CD-1 mice was used for evaluation of oocyst infectiousness following treatment. Survival curves of ozone inactivation were characterized by a tail-off effect, with an initial shoulder most evident at low temperature. Temperature was a critical factor for ozone inactivation kinetics with a significant decrease of ozone efficacy at low temperature. Accounting for ozone residual stability at different pH conditions, pH was found to have no significant effect on the activation of C. parvum by ozone. Inactivation kinetics at different temperatures were expressed as an Incomplete gamma Hom model with different reaction rate constants, adjusted for water temperature using the van't Hoff-Arrhenius relationship. Between 1 and 37°C, for every 10°C decrease in the water temperature, the inactivation rate constant decreased by a factor of 2.2, corresponding to activation energy of 51.7 kJ∕mol. Ozone disinfection design criteria for 1.0 and 2.0 log-units of inactivation of Cryptosporidium were developed for various water temperatures, and 90% confidence intervals are also provided.  相似文献   

9.
Ultraviolet (UV) absorbance measurements are subject to significant error using a standard spectrophotometer when particles or aggregates that scatter light are present. True UV absorbance for highly turbid waters should be measured using integrating sphere (IS) spectrophotometry that allows the collection of reflected and transmitted radiation simultaneously. This is especially important when the effects of scattering impact UV disinfection—such as with the presence of aggregates. The impact of light scattering of particle-aggregated microbes on UV disinfection was evaluated by comparing standard spectrophotometer and integrating sphere absorbance measurements for UV fluence determination. Spore–clay aggregates in simulated drinking waters and spore aggregates with natural particles from raw waters were induced by flocculation with alum. Coagulated systems significantly decreased the UV inactivation effectiveness compared to the noncoagulated system with the effects more pronounced for raw natural water. Absorbance measurement of suspensions and aggregates using standard spectrophotometry in the calculations of fluence resulted in overdosing whereas the use of IS spectroscopy did not. The results demonstrated that aggregation protected spores from UV disinfection, and that use of proper absorbance measurement techniques, accounting for particle scattering, is essential for correct interpretation of the results.  相似文献   

10.
The objective of this paper is to evaluate the change in Bacillus subtilis spore survival and dimensions following ultraviolet and chlorine disinfection in water. Disinfection was monitored by using tools such as atomic force microscopy (AFM), particle sizing by the electrozone sensing technique and fluorescence of spores after staining with an optical brightener. Results indicated that there was a change in the adsorbed fluorescence following chlorine; however, the magnitude of this change was only approximately twofold at 90% of spore kill. In addition, changes in spore particle-size distribution following chlorine occur at above 99.9% of spore kill. Even the roughness (RMS), width, and length of spores as measured by AFM change only after about 99% of spore killing with chlorine. Use of optical brighteners, AFM, and sizing are not sensitive enough for detecting the disinfection of chlorine-resistant spores and as expected no changes occurred with ultraviolet treated spores. Even though, these techniques may have the potential for determining oxidative disinfection and for the development of monitors and sensors of chemical disinfection for chlorine-sensitive microorganisms.  相似文献   

11.
The carcinogen N-nitrosodimethylamine (NDMA) may be quantitated routinely at ultratrace (ng/L) levels in drinking water or contaminated groundwater. The aqueous sample is passed through a preconditioned Empore C18 filter disk to remove neutral nonpolar species and then extracted continuously overnight with highest purity dichloromethane. The latter is then concentrated to 1 mL, and a large aliquot (up to 200 microL) is loaded onto a dual-stage carbon sorbent trap, after which the solvent is removed with ultrapure helium. The concentrated residues are then injected onto a gas chromatographic column using a short-path thermal desorber. NDMA is selectively detected using a chemiluminescent nitrogen detector (CLND) operated in its nitrosamine-selective mode. The reporting limit for this procedure, evaluated using two independent statistically unbiased protocols, is 2 ng of NDMA/L. A related procedure, employing an automatic sampler instead of the short-path thermal desorber, provides convenient analysis of heavily contaminated samples and exhibits a reporting limit (same protocols cited previously) of 110 ng of NDMA/L. When the two methods are used together in a "two-tiered" protocol, NDMA concentrations spanning 4 orders of magnitude (ng/L to microgram/L levels) may be measured routinely. The low-level procedure employing only the short-path thermal desorber was applied successfully to three sources of drinking water, where NDMA concentrations ranged between 2 and 10 ng of NDMA/L. The two-tiered protocol was applied to a series of contaminated groundwaters whose NMDA concentrations ranged between approximately 10-7000 ng of NDMA/L. The results agreed with those obtained from an independent collaborating laboratory, which used a different analytical procedure.  相似文献   

12.
Drinking water utilities may be required to change disinfectant to improve water quality and meet more stringent disinfection regulations. This research was conducted to assess and compares chlorine dioxide to free chlorine and chloramines on bacterial water quality monitored within model distribution systems (i.e., annular reactors). Following colonization with nondisinfected water, annular reactors containing either polycarbonate or cast iron coupons were treated with free chlorine, chlorine dioxide or chloramines. Two disinfectant doses (low/high) were tested for each disinfectant. Under specific environmental conditions, bacterial inactivation varied as a function of the disinfectant type and dose, sample type (bulk water versus biofilm bacteria) and coupon material. The ranking by efficiency was as follows: chlorine dioxide > chlorine > chloramines. On preformed biofilms of 106–107?cfu/cm2, the continuous application of a disinfectant led to a log removal of heterotrophic bacteria concentrations for suspended and biofilm bacteria ranging from 1.1 to 4.0, and from 0.2 to 2.5, respectively. Doubling the amount of disinfectant doses led to an additional log inactivation of 1–2.5 of heterotrophic bacteria levels. This study demonstrates that bacterial inactivation in distribution systems is governed by various inter-related parameters. The data indicate that chlorine dioxide represents a viable alternative for secondary disinfection in distribution systems.  相似文献   

13.
Bromate is a disinfection byproduct in drinking water which is formed during the ozonation of source water containing bromide. This paper describes the analysis of bromate via ion chromatography-inductively coupled plasma mass spectrometry. The separation of bromate from interferences such as bromide and brominated haloacetic acids is achieved using a PA-100 column in combination with a 5 mM HNO3 + 25 mM NH4NO3 mobile phase. Polyatomic ions are observed on masses 79 and 81 in a synthetic phosphate matrix and in ozonated drinking waters. These polyatomic ions have been tentatively identified as PO3+ and H2PO3+. These polyatomic ions do not interfere with the detection of bromate because phosphate elutes prior to bromate. A polyatomic ion is observed on mass 81 in a synthetic sulfate matrix and in ozonated drinking waters. This polyatomic ion has been tentatively identified as HSO3+ and does not interfere with the detection of bromate because sulfate elutes after bromate. Isotope dilution analysis produces a relative standard deviation (RSD) of approximately 5% for both enriched isotopic additions at sample concentrations of 10 ng/g. The RSD associated with the direct analysis of bromate is 3.2% at sample concentrations of 10 ng/g. The bromate concentrations determined in ozonated drinking waters via isotope dilution analysis are within 10% of the concentrations determined via direct analysis for sample concentrations above 2 ng/g. The detection limit for the direct analysis of bromate via IC-ICPMS is 0.3 ng/g.  相似文献   

14.
An electrochemical (EC) disinfection system employing an iridium–antimony–tin-coated titanium anode and direct current was used to inactivate bacteriophage MS2 in synthetic solutions with sodium chloride addition. The inactivation data fit the modified Chick–Watson (n ≠ 1) model well. The model indicates that, although better disinfection could be achieved with increases in salt content, contact time, and applied current, these three parameters influence the EC disinfection of MS2 in distinct manners and to different degrees. Compared with chlorination, our EC disinfection system exhibited superior inactivation capability especially with a longer contact time or in the presence of ammonium. The formation of trihalomethanes and haloacetic acids in the EC system was smaller than that from chlorination but a large formation of chlorate ions was observed. These differences indicate that the EC system is likely to produce other potent oxidants that enhance inactivation and alter disinfection by-product formation.  相似文献   

15.
This review discusses the relation between by-products of drinking water chlorination and cancer in the light of present toxicological and epidemiologic evidence. During the chlorination of drinking water, a complex mixture of by-products forms from chlorine and the organic and inorganic compounds present in raw water. The quality and quantity of such compounds depend on the specific nature of the organic material in raw waters, the inorganic material in raw water, pH, temperature, other water treatment practices, and the chlorine timing and dose added. Chlorination by-products are important mainly when surface water is used for drinking water as more organic compounds are present in surface waters than in ground waters. The gastrointestinal and urinary tract are the cancer sites that are most often associated with the use of chlorinated surface water or with the quantity of chlorination by-products in the water-supply network. Yet the microbial quality of drinking water should not be compromised by excessive caution over the potential long-term effects of disinfection by-products because the risk of illness and death resulting from exposure to pathogens in untreated drinking water may be several orders of magnitude greater than the cancer risks from chlorination by-products.  相似文献   

16.
Chlorination is an effective method for disinfection of drinking water. Yet chlorine is a strong oxidizing agent and easily reacts with both organic and inorganic materials. Trihalomethanes (THMs), formed as a by-product of chlorination, are carcinogenic to humans. Models can be derived from linear and nonlinear multiregression analyses to predict the THM species concentration of empirical reaction kinetic equations. The main objective of this study is to predict the concentrations of THM species by minimizing the nonlinear function, representing the errors between the measured and calculated THM concentrations, using the genetic algorithm (GA) and simulated annealing (SA). Additionally, two modifications of SA are employed. The solutions obtained from GA and SA are compared with the measured values and those obtained from a generalized reduced gradient method (GRG2). The results indicate that the proposed heuristic methods are capable of optimizing the nonlinear problem. The predicted concentrations may provide useful information for controlling the chlorination dosage necessary to assure the safety of water drinking.  相似文献   

17.
Worldwide, the increasing occurrence of toxins produced by cyanobacteria in water bodies used as source waters for drinking water has become an important public health issue. Microcystin-LR is one of the most commonly found cyanotoxins. A detailed evaluation of the free chlorine induced inactivation kinetics of extracellular microcystin-LR is presented in this study. Rate constants needed for chlorine inactivation of the toxin were derived from the data. The effects of varied pH, chlorine dose, toxin concentration, and temperature on the rate of inactivation were evaluated. Batch chlorination experiments were run using carbonate-buffered Milli-Q water at three different initial toxin concentrations (1, 2, and 8?μg/L), three different chlorine doses (1, 3, and 9?mg/L), and three different pH values (6.0, 7.5, and 9.0) at 11, 20 and 29°C. The study showed that extracellular microcystin-LR was inactivated by free chlorine and the inactivation rate was affected by pH. The highest inactivation rates were observed at pH 6.0 and the lowest at pH 9.0.  相似文献   

18.
This study evaluated the feasibility of utilizing low-grade heat sources such as solar energy or waste heat from industrial processes for desalination. The premise of the approach is that saline waters can be desalinated by evaporation and condensation of fresh water at near-ambient temperatures at low pressures. Low pressures can be achieved naturally in the head space of water columns of height equal to the local barometric head. By connecting the head space of such a saline water column to that of a distilled water column, and by maintaining the temperature of the former about 15–20°C above that of the latter, fresh water can be evaporated from the saline column and condensed in the distilled water column. In this study, it is proposed to use a sensible heat thermal energy storage (TES) system to heat the head space of the saline water column. The TES can be maintained at the desired temperature using solar energy and/or waste heat from thermal power plants, refrigeration plants, or air conditioning units. This paper presents the feasibility of the proposed approach, where the TES is maintained at the design temperature by a solar-powered absorption refrigeration system (ARS) augmented by an electric heater. Results of this feasibility study show that the heat rejected by an ARS of cooling capacity of 3.25?kW (0.975 tons of refrigeration) along with an additional energy input of 208?kJ/kg of desalinated water is adequate to produce desalinated water at an average rate of 4.5?kg/h. The solar panel area required for this application was 25?m2. An integrated process model and performance curves of the proposed approach are presented.  相似文献   

19.
Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence of eight synthetic musk fragrances [7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), 1,3,4,6,7,8-hexahydro-4,6,6,7,8-hexamethylcyclopenta-γ-2-benzopyran (HHCB), 5-acetyl-1,1,2,6-tetramethyl-3-iso-propylindane (ATII), 4-acetyl-1,1-dimethyl-6-tert-butylindane (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindane (AHMI), 6,7-dihydro-1,1,2,3,3,-pentamethyl-4-(5H)-indanone (DPMI), 1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene (musk xylene), and 4-tert-butyl-3,5-dinitro-2,6-dimethylacetophenone (musk ketone)] in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67–89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water.  相似文献   

20.
A complete inactivation is observed after a 3 min pre-incubation at 70 degrees C with mitochondrial F0F1-ATPase complex depleted of the ATPase natural inhibitor protein (ammonium-Sephadex submitochondrial particles) and activated MgATP-submitochondrial particles (particles that after a 4 h-pre-incubation at 42 degrees C released the endogenous inhibitor protein). However, latent MgATP-submitochondrial particles (particles containing the inhibitor protein) pre-incubated under the same conditions are totally inactivated only after 15 min of pre-incubation. When ammonium-Sephadex particles are reconstituted with 20 micrograms/ml of purified ATPase inhibitor protein there is an increase of 15-fold in the half-time for thermal inactivation (t0.5), showing that the inhibitor protein protects the mitochondrial F0F1-ATPase complex against thermal inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号