首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大孔树脂纯化菠萝蜜果皮黄酮工艺   总被引:1,自引:0,他引:1  
本实验以菠萝蜜果皮为原料,比较5种大孔树脂对菠萝蜜果皮黄酮吸附率和解吸率的影响,筛选出适合纯化菠萝蜜果皮黄酮的大孔树脂,通过单因素和正交实验优化纯化工艺;测定菠萝蜜果皮黄酮纯化前后清除DPPH自由基和ABTS自由基作用,分析纯化效果。结果表明:NKA-9树脂纯化菠萝蜜黄酮效果较好,最佳条件为粗提液浓度6 mg/m L,上样流速1.5 m L/min;洗脱剂70%(v/v)乙醇,洗脱流速2.5 m L/min,菠萝蜜果皮黄酮纯度提高至80.15%。菠萝蜜果皮黄酮纯化后清除DPPH自由基和ABTS自由基IC_(50)值分别为0.0054、0.015 mg/m L,优于纯化前的IC_(50)值0.041、0.092 mg/m L。以上说明,NKA-9树脂适合分离纯化菠萝蜜果皮黄酮。  相似文献   

2.
目的筛选纯化桑叶黄酮的最佳树脂,并优化纯化工艺,提高桑叶黄酮产品纯度。方法利用静态吸附试验确定最佳树脂,分别研究上样流速、上样浓度、洗脱剂等对黄酮损失率及纯度的影响。结果 XDA-8大孔吸附树脂对黄酮吸附效果最好,最佳纯化条件:上料浓度0.9 mg/m L,流速2 BV/h,50%乙醇洗脱。利用上述工艺连续纯化5批,桑叶黄酮收率90%以上,产品纯度保持在50%以上,灰分1%以下。结论利用XDA-8大孔树脂纯化桑叶黄酮,工艺稳定,操作简单,利于工业化生产。  相似文献   

3.
研究通过静态吸附试验比较NKA-9、AB-8、HPD-400、D101等4种大孔树脂对秋葵中黄酮类物质的吸附与解吸性能,并以VC为对照,对其还原力及羟自由基(·OH)、超氧阴离子自由基(O_2~-·)、DPPH自由基(DPPH·)、ABTS~+自由基(ABTS~+·)清除能力进行探讨。结果表明,最适合分离纯化秋葵黄酮的树脂类型为AB-8型,通过动态吸附-洗脱试验得出AB-8树脂分离纯化秋葵黄酮的最佳工艺为上样浓度0.60 mg/m L,上样流速0.70 m L/min,洗脱剂为70%乙醇,洗脱流速0.40 m L/min,纯化后秋葵黄酮纯度由39.2%提高到67.3%。抗氧化结果显示秋葵黄酮对秋葵黄酮总还原力高于VC,对·OH、O_2~-·、DPPH·、ABTS~+·的IC_(50)值分别为0.56、0.42、0.62、0.52 mg/m L,其最大清除率分别为90.4%、80.4%、77.6%、88.4%,具有良好的体外抗氧化活性。  相似文献   

4.
以葡萄糖为标准品,利用大孔吸附树脂分离纯化玉竹多糖,结果表明AB-8大孔吸附树脂分离纯化玉竹多糖的最佳上样浓度为1.0 mg/m L,最佳洗脱浓度为75%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10 BV,玉竹粗多糖的纯度从65.23%提高到78.64%;D-101大孔吸附树脂分离纯化玉竹多糖的最佳上样浓度为0.6 mg/m L,最佳洗脱浓度为50%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10.5 BV,玉竹粗多糖的纯度从65.23%提高到73.79%。AB-8大孔吸附树脂对玉竹多糖的分离纯化效果优于D-101大孔吸附树脂。  相似文献   

5.
以红腰豆总黄酮粗提液为原料,研究大孔树脂对红腰豆黄酮的纯化工艺和效果,比较了8种树脂对红腰豆总黄酮的静态吸附和解吸性能,对AB-8型大孔树脂分离纯化红腰豆总黄酮进行了单因素、BoxBenhnken中心组合设计和响应面法优化试验,并考察了红腰豆总黄酮纯化前后体外抗氧效果。结果表明:AB-8树脂为纯化红腰豆总黄酮的最佳树脂,其最佳的吸附工艺条件为:上样质量浓度4.0 mg/m L,上样液pH 6.3,上样流速2.0 m L/min,上样体积5.0 BV,在此条件下吸附率可达(98.03±0.30)%;最佳的解吸工艺条件为乙醇体积分数75%,洗脱流速3.0 m L/min,洗脱体积2.0 BV,在此条件下解吸率可达(94.52±0.24)%。纯化后红腰豆总黄酮纯度提高了约2.85倍,纯化前DPPH·、·OH和O-2·的清除率IC50值分别为1.18、1.40、6.51 mg/m L,纯化后分别为0.37、0.82、1.77 mg/m L,纯化后红腰豆总黄酮提取物的体外抗氧化活性明显增强。  相似文献   

6.
大孔树脂纯化黄秋葵黄酮及其体外抗氧化活性研究   总被引:2,自引:0,他引:2  
以黄秋葵为原料,以总黄酮为研究对象,开展了总黄酮提取、分离纯化及抗氧化活性的研究。采用静态和动态吸附-解吸实验对8种不同型号大孔树脂进行筛选,以吸附、解析效果为指标,考察大孔树脂纯化黄酮的工艺参数,并利用DPPH、ABTS、Fe3+法测定黄秋葵黄酮体外抗氧化活性。结果表明AB-8型大孔吸附树脂纯化效果最好,最佳工艺条件如下:上样液质量浓度为0.927 mg/m L,上样量为50 m L,用5 BV的30%乙醇作为解吸剂,以1.0 m L/min的洗脱速度进行解吸。抗氧化结果显示黄酮提取物对DPPH、ABTS自由基有明显的清除能力(IC50值分别为0.440 mg/m L和0.256 mg/m L),并对Fe3+表现出了较高的还原能力。  相似文献   

7.
以葡萄糖为标准品,利用大孔吸附树脂分离纯化玉竹多糖,结果表明D301大孔吸附树脂最佳上样浓度为1.3 mg/m L,最佳洗脱浓度为50%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10 BV,玉竹粗多糖的纯度从65.23%提高到82.52%;LSA-700B大孔吸附树脂分离纯化玉竹多糖的最佳上样浓度为0.6 mg/m L,最佳洗脱浓度为75%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10.4 BV,玉竹粗多糖的纯度从65.23%提高到76.43%;D301大孔吸附树脂对玉竹多糖的分离纯化效果明显优于LSA-700B大孔吸附树脂。  相似文献   

8.
在前期研究超声波辅助提取沙枣果总黄酮的工艺基础上,为探讨沙枣果总黄酮的纯化工艺,选择大孔树脂为吸附剂来分离纯化沙枣果总黄酮。先进行了大孔树脂的选择试验研究和大孔树脂静态吸附动力学研究,结果表明AB-8树脂的吸附量和解吸率都较高,是适于吸附分离沙枣果总黄酮的理想树脂类型。在此基础上,通过AB-8大孔树脂对沙枣果总黄酮动态吸附试验、动态洗脱试验确定出沙枣果总黄酮的最佳纯化条件:上样量70 m L、上样浓度0.5 mg/m L、p H4.0、上样流速1.0 m L/min;使用4BV用量的90%乙醇作为洗脱剂进行洗脱,解析流速为1.5 m L/min;AB-8大孔树脂对沙枣果总黄酮的纯化效果较好,纯度为65.56%,是粗提黄酮纯度的2.84倍。并对纯化后的沙枣果总黄酮进行成分鉴定和抗氧化性能评价,结果表明,沙枣果总黄酮纯化物抗脂质过氧化能力明显强于VC和PG,3种自由基抗氧化能力均强于PG,弱于VC。  相似文献   

9.
以黄酮含量为指标,通过静态吸附与解吸试验,从5种大孔吸附树脂中筛选出效果较好的AB-8树脂进行动态试验研究。结果表明:AB-8大孔树脂分离纯化苦菜叶黄酮的工艺条件为上样溶液p H值为5.0,上样溶液质量浓度为2mg/m L,吸附流速为2.0m L/min,洗脱剂乙醇浓度为60%,洗脱流速为1m L/min,洗脱剂用量为540m L。经过AB-8树脂纯化后,苦菜叶黄酮纯度提高到46.3%。该方法简单可行,适合于工业化生产。  相似文献   

10.
聚酰胺树脂分离纯化芹菜黄酮的工艺研究   总被引:2,自引:2,他引:0  
利用聚酰胺树脂分离纯化芹菜粗黄酮,探讨聚酰胺柱层析分离条件,确定聚酰胺柱分离纯化芹菜黄酮的最佳工艺参数.采用紫外分光光度法测定分离纯化过程中黄酮含量的变化.评价聚酰胺树脂吸附与解析性能和洗脱剂浓度、洗脱流速对洗脱率的影响.采用高效液相色谱检测芹菜粗黄酮经聚酰胺树脂吸附纯化后芹菜黄酮的纯度.用0.82 8 ms/mL芹菜粗黄酮溶液,以0.5 mL/min的流速上样后3倍体积的水洗去杂质,然后用3倍体积的40%乙醇以1 mL/min流速洗脱,收集浓缩干燥,芹菜黄酮含量达到80%.  相似文献   

11.
目的:探讨大孔树脂分离纯化迷迭香叶总黄酮及抗氧化活性。方法:选择6种类型大孔树脂,比较其吸附量、吸附率和解吸率,筛选最佳树脂,单因素分析最佳纯化工艺条件,检测迷迭香叶总黄酮体外抗氧化活性。结果:AB-8为最佳树脂,上样液浓度为2.25mg/mL,上样流速为3BV/h,pH为3.15,上样体积为1.5BV。以4BV 80%乙醇在流速2BV/h下洗脱,得黄酮的纯度为68.39%,精制倍数为3.37。迷迭香总黄酮对DPPH和ABTS自由基具有良好的清除能力。结论:AB-8树脂对迷迭香叶总黄酮具有良好的吸附和解吸效果,且迷迭香叶总黄酮具有良好的抗氧化作用。  相似文献   

12.
研究大孔吸附树脂富集纯化酸枣仁总黄酮的最佳条件,并进行了总黄酮体外抗氧化能力的测定。利用静态吸附和动态吸附实验对5种不同极性的大孔吸附树脂进行筛选,并对上样液质量浓度、上样量、洗脱剂体积分数、洗脱剂体积以及洗脱剂流速等条件分别进行考察。采用DPPH自由基和ABTS+自由基的清除率以及铁氰化钾的还原能力作为指标考察纯化后总黄酮的体外抗氧化能力。结果表明AB-8大孔吸附树脂为纯化酸枣仁总黄酮的最佳树脂,纯化工艺为上样液质量浓度1.99 mg/m L,上样量50 m L,洗脱剂体积分数50%乙醇,洗脱剂体积50 m L,洗脱剂流速1 m L/min。抗氧化结果显示总黄酮对DPPH和ABTS+自由基具有明显的清除能力(IC50值为0.70 mg/m L和0.15 mg/m L),并对铁氰化钾表现出了较强的还原能力。  相似文献   

13.
《食品与发酵工业》2016,(4):224-228
用大孔树脂对南瓜果皮色素进行纯化研究。利用有机溶剂回流提取法粗提南瓜果皮色素,研究了不同树脂对南瓜果皮色素的吸附和解析,并对其纯化的静态以及动态吸附工艺进行探讨。纯化最佳工艺条件为:D101型大孔树脂作为吸附剂的条件下,静态吸附时间为3 h、南瓜皮粉提取液与树脂的质量比为1∶7、原液p H值为4、在此工艺条件下,吸附率最大,达到75.3%;静态解析达到平衡时间为90 min、洗脱剂浓度为60%、上样流速为5 m L/min、洗脱流速为1 m L/min;此时解析效果最佳。  相似文献   

14.
本研究以提取挥发油后的高良姜残渣为原料提取黄酮,采用7种大孔树脂进行静态吸附和解吸试验,筛选出最佳分离纯化树脂,再通过柱层析的动态吸附和洗脱试验,优化出分离纯化条件,并测定纯化前后的黄酮纯度和抗氧化活性。结果表明,XDA-6树脂最适合分离纯化高良姜黄酮,最佳纯化条件为上样流速2 BV/h,上样液浓度2 mg/mL,上样液体积31.6 BV,洗脱液为70%(v/v)乙醇,洗脱液流速2.5 mL/min,洗脱液用量3.1 BV,在此条件下,黄酮的纯度由43.55%±0.15%提高到85.42%±0.64%;纯化后的高良姜黄酮对DPPH与超氧阴离子自由基的清除率和还原能力均有所提升,清除DPPH和超氧阴离子的IC50值分别由纯化前的0.014、0.222 mg/mL降低到纯化后的0.012、0.186 mg/mL。  相似文献   

15.
张德谨  陈义勇  胡雅琳  刘祥 《食品与机械》2018,34(2):166-170,194
为了对乌饭树叶黄酮进行纯化,通过动态吸附与解吸试验,探讨上样体积、上样浓度、上样流速、洗脱剂、洗脱流速以及洗脱体积对乌饭树叶黄酮吸附及解吸效果的影响,然后利用蛋白质和多糖的脱除率以及HPLC谱图对纯化效果进行评价。结果表明:NKA-II树脂具有较高的吸附率、解吸率以及较短的吸附时间,确定NKA-II树脂作为乌饭树叶黄酮纯化的柱填料,大孔树脂NKA-II纯化乌饭树叶黄酮最佳工艺条件为:上样体积2.0BV(柱体积),上样浓度0.75mg/mL,上样流速1 mL/min,洗脱剂为50%(体积分数)的乙醇,洗脱流速1.0 mL/min,洗脱体积3BV。在该纯化工艺条件下,HPLC表明纯化后乌饭树叶黄酮纯度明显提高,蛋白质脱除率达76.32%,多糖脱除率达65.45%,黄酮纯度达48.92%。  相似文献   

16.
确定艾草总黄酮初步分离纯化的最佳工艺条件及抗氧化活性。比较6种大孔吸附树脂的静态吸附和解吸附效果,确定最佳吸附树脂并考察其上样液浓度、上样液pH值、吸附温度、上样速度、洗脱流速、洗脱用量对艾草总黄酮吸附及解析附性能的影响。结果表明:AB-8大孔吸附树脂的综合效果最佳,其最佳工艺条件为:上样液浓度为2.5 mg/mL,上样液pH值为4,吸附温度为20℃,上样速度为1.5 mL/min,选用80%乙醇进行洗脱,洗脱流速为1.5 mL/min,洗脱剂用量为100 mL。在此吸附和解吸条件下,艾草总黄酮的纯度由36.1%上升至75.43%,纯度提高了近2倍,纯化效果良好。抗氧化试验结果表明:艾草总黄酮具有一定的抗氧化活性,是一种潜在的天然抗氧化剂。  相似文献   

17.
《食品与发酵工业》2015,(7):130-136
采用壳聚糖絮凝与聚酰胺吸附相结合的方法纯化甜叶菊废渣乙醇提取液中的黄酮,并优化该工艺的条件。以黄酮纯度为主要考查指标,通过单因素及正交试验进行分析,确立壳聚糖絮凝沉淀法纯化的最佳条件;通过研究聚酰胺粉对甜叶菊废渣黄酮的吸附解吸性能、吸附动力学及等温线、上样浓度、过柱的流速、乙醇洗脱浓度及流速等,建立聚酰胺柱层析纯化法的最佳条件。实验表明:壳聚糖絮凝温度35℃,p H=5,搅拌时间15 min,壳聚糖溶液加入量1.0 m L。聚酰胺吸附的上样浓度约为0.2 mg/m L,流速为1.5 m L/min,洗脱液为体积分数60%乙醇,流速为1.5 m L/min,最终黄酮纯度达到53.42%,为醇提物的6倍以上。  相似文献   

18.
探索大孔吸附树脂纯化野生椒蒿总黄酮的工艺和体外抗氧化活性。以总黄酮吸附量和解析量为响应值,考察7种不同的大孔吸附树脂对野生椒蒿总黄酮的吸附和解析能力,再通过动态吸附和解析试验优化工艺条件筛选出最佳的树脂类型为AB-8,并考察野生椒蒿总黄酮对ABTS+的清除能力。研究结果表明,AB-8型树脂对椒蒿总黄酮纯化的较佳工艺为:提取液黄酮质量浓度为1 mg/mL、pH4、上样流速2 BV/h、上样量5 BV、洗脱剂为体积分数60%的乙醇溶液、洗脱剂用量为4 BV。在最佳工艺条件下,纯化后的黄酮提取液浸膏中总黄酮含量由13.6%提高到52.4%。体外抗氧化活性试验表明,椒蒿总黄酮对ABTS+具有清除活性,且随着质量浓度的增加,清除活性有明显加强。  相似文献   

19.
文章通过比较8种大孔吸附树脂的吸附和解吸附性能,筛选出X-5为生姜黄酮的最佳优选树脂,随后对其动态吸附的上样温度、洗脱剂浓度、洗脱流速和洗脱温度等工艺参数以及黄酮的抗氧化活性进行了研究。结果表明:30~35℃上样吸附,洗脱剂(乙醇)浓度80%、洗脱流速1 mL/min、洗脱温度30℃的条件下洗脱,黄酮得率高,纯度稳定。生姜黄酮在一定浓度范围内具有较强的抗氧化活性,与同等浓度范围内的维生素C溶液相当或强于维生素C溶液;未纯化生姜黄酮的抗氧化活性要强于纯化后的生姜黄酮。  相似文献   

20.
研究大孔吸附树脂分离纯化菜芙蓉黄酮的最佳工艺条件。以总黄酮吸附量和解吸量为指标,进行静态吸附和解吸试验对14种型号大孔树脂进行筛选,再通过动态吸附和解吸试验对纯化工艺参数进行优化。Z801大孔树脂对菜芙蓉总黄酮的吸附与解吸性能最佳。HZ801纯化菜芙蓉黄酮的最佳工艺条件为:上样浓度为1 mg/m L,上样流速2 m L/min,上样量为140 m L;依次用2 BV水洗脱,用70%乙醇以2 m L/min的速率洗脱2.2 BV。在优化工艺条件下,菜芙蓉黄酮的平均吸附率是95.03%,纯化倍数4.04。HZ801型大孔树脂富集黄酮的效果最佳,是一种较理想的分离纯化介质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号