首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本实验以菠萝蜜果皮的黄酮粗提液为供试液,通过静态吸附解析从6种极性不同的大孔树脂中筛选出NKA树脂作为最佳分离纯化树脂,并对NKA柱层析的动态吸附解析条件进行探索,得到最佳上样浓度为0.90 mg/m L、上样体积为200 m L、洗脱剂用量为120 m L;通过柱层析的单因素和正交实验,得到最佳纯化工艺为:上样流速和洗脱流速4 m L/min,上样p H5,以70%乙醇洗脱,此条件下,黄酮回收率高达96.02%;过柱后样品的黄酮纯度由原来的16.74%提高到84.42%,提高了4.04倍,表明NKA树脂对菠萝蜜果皮黄酮的富集纯化效果显著。对比纯化前后黄酮的体外抗氧化活性,结果表明,经NKA柱层析后,随着黄酮纯度提高,样品的体外抗氧化活性也显著提高。   相似文献   

2.
《食品与发酵工业》2016,(4):224-228
用大孔树脂对南瓜果皮色素进行纯化研究。利用有机溶剂回流提取法粗提南瓜果皮色素,研究了不同树脂对南瓜果皮色素的吸附和解析,并对其纯化的静态以及动态吸附工艺进行探讨。纯化最佳工艺条件为:D101型大孔树脂作为吸附剂的条件下,静态吸附时间为3 h、南瓜皮粉提取液与树脂的质量比为1∶7、原液p H值为4、在此工艺条件下,吸附率最大,达到75.3%;静态解析达到平衡时间为90 min、洗脱剂浓度为60%、上样流速为5 m L/min、洗脱流速为1 m L/min;此时解析效果最佳。  相似文献   

3.
大孔树脂纯化甘薯叶黄酮的工艺研究   总被引:1,自引:0,他引:1  
在前期研究超声提取甘薯叶黄酮的工艺基础上,为探讨甘薯叶黄酮的纯化工艺,本研究选择大孔树脂为吸附树脂来分离纯化甘薯叶黄酮.首先进行了大孔树脂的选择实验研究、大孔树脂静态吸附动力学研究,结果表明,AB-8树脂的吸附量和解吸率都较高,是理想的适用于甘薯叶黄酮吸附分离的树脂类型.在此基础上,通过AB-8大孔树脂对甘薯叶黄酮动态吸附实验、动态洗脱实验确定出AB-8大孔树脂分离纯化甘薯叶黄酮的最佳条件为:上样液浓度为2.02.5mg·mL-1,pH值6.0,上样流速为2BV*h-1;使用3BV用量的90%的乙醇作为洗脱剂进行洗脱,解析流速为1BV*h-1.AB-8大孔树脂纯化后的甘薯叶黄酮含量较高,纯度为64.21%,与甘薯叶黄酮提取原液中纯度26.87%相比,提高了2.38倍.  相似文献   

4.
张德谨  陈义勇  胡雅琳  刘祥 《食品与机械》2018,34(2):166-170,194
为了对乌饭树叶黄酮进行纯化,通过动态吸附与解吸试验,探讨上样体积、上样浓度、上样流速、洗脱剂、洗脱流速以及洗脱体积对乌饭树叶黄酮吸附及解吸效果的影响,然后利用蛋白质和多糖的脱除率以及HPLC谱图对纯化效果进行评价。结果表明:NKA-II树脂具有较高的吸附率、解吸率以及较短的吸附时间,确定NKA-II树脂作为乌饭树叶黄酮纯化的柱填料,大孔树脂NKA-II纯化乌饭树叶黄酮最佳工艺条件为:上样体积2.0BV(柱体积),上样浓度0.75mg/mL,上样流速1 mL/min,洗脱剂为50%(体积分数)的乙醇,洗脱流速1.0 mL/min,洗脱体积3BV。在该纯化工艺条件下,HPLC表明纯化后乌饭树叶黄酮纯度明显提高,蛋白质脱除率达76.32%,多糖脱除率达65.45%,黄酮纯度达48.92%。  相似文献   

5.
大孔树脂纯化银杏叶黄酮的研究   总被引:1,自引:1,他引:1       下载免费PDF全文
以脱脂银杏叶粉为原料,采用70%乙醇浸提法提取银杏叶黄酮,研究大孔树脂纯化银杏叶黄酮的工艺条件。以吸附率和解吸率为指标,考察了AB-8、D101、HPD-100 3种大孔树脂对银杏叶黄酮的吸附解吸性能,筛选出适合银杏叶黄酮分离纯化的树脂为AB-8型大孔树脂。结合静态与动态吸附解吸试验,得出AB-8大孔树脂分离纯化银杏叶黄酮的最佳工艺:将银杏叶黄酮提取原液稀释1.5倍(浓度为0.94 mg/mL)、调pH至4.85作为上样液,以1.5 BV/h的流速上样吸附,上样量200 mL,之后采用pH 4.95的80%乙醇作为洗脱剂,以2~2.5 BV/h的流速进行洗脱,洗脱剂用量约50 mL。在此纯化条件下所得银杏叶黄酮含量为26.16%,较纯化前提高了3.2倍。该纯化工艺条件科学合理,可有效用于银杏叶黄酮的分离富集,提高银杏叶提取物中的黄酮含量。  相似文献   

6.
本文用大孔吸附树脂分离纯化荷叶黄酮。选择3种大孔吸附树脂,通过比较其对荷叶黄酮的静态吸附结果,筛选出较好的荷叶黄酮吸附剂,并对其动态吸附及解析性能进行了考察。结果表明:AB-8型大孔吸附树脂对荷叶黄酮有较好的吸附和解析效果,适合用于荷叶黄酮的精制。  相似文献   

7.
为研究仙草黄酮纯化工艺及其主要组分的结构,以仙草为原料,采用大孔树脂(HPD-100)、羟丙基葡聚糖凝胶(Sephadex LH-20)分别对仙草黄酮进行柱层析纯化和组分分离,利用HPLC、1H-NMR、13 C-NMR对分离得到的化合物进行分析和结构鉴定.结果表明,HPD-100大孔树脂纯化仙草黄酮效果良好,动态吸附...  相似文献   

8.
在前期研究麦胚黄酮最佳浸提工艺基础上,为探讨麦胚黄酮纯化工艺,本实验选择大孔树脂对其进行分离纯化。以吸附能力、吸附率及解吸率为考察指标,从7种型号大孔树脂中筛选出分离纯化麦胚黄酮效果优的树脂,并确定该树脂的最佳工艺条件。结果表明,H103大孔树脂的吸附率、吸附能力都较高,为麦胚黄酮最佳分离树脂,其最佳工艺条件为上样浓度约0.65 mg/m L、上样速度2.0 BV/h、解吸乙醇浓度70%、解吸速度2.0 BV/h。经H103树脂分离后的麦胚黄酮纯度大大提高,为11.77%,比浸提液中麦胚黄酮纯度0.96%提高了12.26倍。   相似文献   

9.
以孝感产荷叶为实验材料,通过筛选树脂的类别、研究洗脱剂浓度、pH值、流速对吸附过程的影响,确定出大孔树脂纯化荷叶黄酮的新方法.结果表明,大孔树脂HPD-100对荷叶黄酮的吸附量大,解析率高,纯化效果较好,最佳柱层析条件:洗脱剂浓度为70%vol、洗脱液pH值为5.0、洗脱流速为1mL/min.将洗脱液浓缩,真空干燥即得高纯度荷叶黄酮,纯度达90%以上.  相似文献   

10.
研究沉香叶黄酮的大孔树脂纯化工艺及其抗氧化性。通过静态和动态实验,考察树脂种类、粗提液浓度、洗脱剂、上样流速、洗脱流速对沉香叶黄酮吸附解吸性能的影响,确定最佳纯化工艺条件;采用羟自由基法、DPPH自由基和ABTS自由基法,比较纯化前后沉香叶黄酮的抗氧化性。结果表明,NKA-9大孔树脂纯化沉香叶黄酮效果最好,最佳条件为:以1.5 mL/min速度将5.0 mg/mL粗提液上柱,用70%(v/v)乙醇以2.0 mg/mL速度洗脱,此条件下沉香叶黄酮纯度提高至76.58%±3.46%。沉香叶黄酮纯化后清除羟自由基、DPPH自由基和ABTS自由基IC50值分别为(0.120±0.008)、(0.016±0.009)、(0.042±0.002)mg/mL,远低于纯化前的(0.300±0.015)、(0.170±0.008)、(0.160±0.009)mg/mL,说明沉香叶黄酮纯化前后均具有较强的抗氧化性,纯化后抗氧化性明显增强。NKA-9大孔树脂适合分离纯化沉香叶黄酮。  相似文献   

11.
为筛选适合菠萝蜜果皮黄酮的提取方法,以得率为评价指标,应用酶法和有机溶剂浸提法提取其果皮中的黄酮类化合物,在单因素基础上,通过正交实验,优化提取工艺,并对两种提取方法结果进行比较评价。结果表明,酶法提取菠萝蜜果皮黄酮最佳工艺条件为:果胶酶用量300 U/g、乙醇浓度80%(v/v)、温度55℃、p H5.5、底物质量浓度45 g/L,时间2.0 h;有机溶剂浸提最佳工艺条件为:乙醇浓度80%(v/v),温度55℃,料液比1∶20(g/m L),时间2.5 h;酶法提取黄酮类化合物得率和纯度分别为4.98%、12.60%,高于有机溶剂浸提法的3.05%、8.92%,提取物的抗氧化性强于有机溶剂浸提法,说明酶法提取菠萝蜜果皮黄酮优于传统有机溶剂浸提法。   相似文献   

12.
应用大孔吸附树脂对杜仲叶超临界法提取液中的黄酮类物质进行富集和纯化,得到树脂富集杜仲叶黄酮的最优工艺条件。对4 种大孔吸附树脂NKA-2、X-5、D101、AB-8 的吸附和解吸能力进行比较的结果表明:AB-8 树脂的吸附率和解吸率都最高,最佳吸附洗脱工艺为上样液黄酮质量浓度193.92mg/mL、pH2、吸附流速2.6mL/min、洗脱流速1.6mL/min、解吸剂80%乙醇用量30mL。所得洗脱液中黄酮质量分数从纯化前的10.2%可增加到纯化后的42.6% 以上。  相似文献   

13.
竹叶中提取的抗氧化剂具有显著的生理活性。通过静态和动态吸附、解吸实验,研究六种大孔吸附树脂对竹叶提取物中黄酮类混合物的分离纯化效果。静态吸附和解吸实验表明,H-103树脂具有最佳的吸附和解吸平衡,其吸附平衡可通过郎格缪尔等温线获得最佳拟合。为了优化分离工艺,研究不同的负载浓度、不同的乙醇解吸溶液浓度及解吸速率对其纯化效果的影响。采用装填H-103树脂的层析柱进行动态吸附和解吸实验。在经过优化条件下的H-103树脂处理后,产品中竹叶黄酮的含量从11.92%增加为55.00%,回收率为58.00%。结果表明,当前的方法适于从竹叶中大规模制备竹叶黄酮抗氧化剂。  相似文献   

14.
通过静态吸附与解吸附试验确定纯化太空茄叶黄酮的大孔树脂类型并优化其工艺条件,对纯化前后太空茄子叶黄酮的抗氧化活性进行对比分析。结果表明,NKA-II为最佳树脂;NKA-II纯化太空茄子叶黄酮的适宜条件:粗黄酮上样浓度0.362 6mg/mL、上样液pH 2、静态吸附2.5h、用70%的乙醇(pH=3)解吸40 min,黄酮含量由纯化前17.91%上升到64.59%,纯化率提高3.61倍;与芦丁比较,纯化后黄酮对ABTS~+·、DPPH·的清除能力均小于芦丁,且纯化后黄酮对ABTS~+·的清除能力高于纯化前。  相似文献   

15.
研究大孔吸附树脂纯化木薯叶黄酮的工艺条件,比较大孔树脂HPD100、D151、001×1·1、NKA-9、H103和D101对木薯叶黄酮的吸附性能,并对影响树脂解吸的各种因素进行了研究。在考察的6种树脂中,树脂HPD100最适于木薯叶黄酮的分离纯化,具有较高的吸附性,达208mg/g(干重),同时具有良好解吸性能,用7倍树脂体积的70%乙醇洗脱,解吸率可达96·78%。   相似文献   

16.
大孔吸附树脂法纯化木薯叶黄酮的初步研究   总被引:1,自引:1,他引:0  
研究大孔吸附树脂纯化木薯叶黄酮的工艺条件,比较大孔树脂HPD100、D151、001×1.1、NKA-9、H103和D101对木薯叶黄酮的吸附性能,并对影响树脂解吸的各种因素进行了研究.在考察的6种树脂中.树脂HPD100最适于木薯叶黄酮的分离纯化,具有较高的吸附性,达20Smg/g(干重),同时具有良好解吸性能,用7倍树脂体积的70%乙醇洗脱,解吸率可达96.78%.  相似文献   

17.
大孔树脂纯化柑橘皮渣类黄酮的工艺研究   总被引:1,自引:0,他引:1  
以柑橘皮为原料,选用了6种型号大孔树脂对柑橘黄酮进行了静态吸附与解吸试验,结果表明D101型树脂对柑橘黄酮分离纯化效果较好;样品浓度、吸附时间和解吸时间等因素都会对纯化效果有影响;且树脂与样品量比为1:20、吸附时间为2 h、乙醇浓度为40%、解吸时间3.5 h、吸附树脂与解吸液用量比为1:40时纯化效果最佳。该方法操作简便、有效,适于柑橘皮中总黄酮的吸附纯化。  相似文献   

18.
AB-8大孔树脂纯化荷叶总黄酮的工艺研究   总被引:2,自引:0,他引:2  
黄酮类化合物是荷叶的主体活性成分,大孔吸附树脂是一类有机高聚物吸附剂,尤其适用于黄酮类化学物的分离纯化.本实验采用大孔树脂对荷叶总黄酮进行分离纯化,确定其分离纯化条件.树脂的筛选试验结果和静态吸附动力学研究表明:在所选择的6种大孔树脂中, AB-8大孔树脂属于快速吸附树脂,吸附量和解吸率都较高,是理想的适用于荷叶黄酮吸附分离的树脂类型,故采用AB-8大孔树脂分离纯化荷叶总黄酮.AB-8大孔树脂动态吸附实验和动态洗脱实验结果表明:当树脂径高比1 ∶ 10;吸附流速3BV/h;上样液pH值5.0;上样液浓度在2.0mg/mL;使用3BV用量90%的乙醇作为洗脱剂;解析流速为1.5BV/h时,荷叶黄酮纯度为53.44%.颜色反应初步鉴定结果表明:荷叶中的黄酮物质大多属于黄酮、黄酮醇类化合物.  相似文献   

19.
大孔树脂纯化蓝莓叶总黄酮的工艺研究   总被引:5,自引:1,他引:5  
比较了9种大孔树脂对蓝莓叶黄酮的吸附和解吸效果。从中筛选出适合蓝莓叶黄酮分离纯化的树脂,并对其吸附和解吸条件进行了探讨。结果表明:HPD-600大孔树脂是纯化蓝莓叶黄酮比较好的树脂,蓝莓叶黄酮在HPD-600型树脂上的吸附平衡时间为4h,解吸平衡时间为1.5 h,吸附的最适质量浓度为4.09 mg/mL,pH 5.0时吸附能力比较强,解吸时宜选用体积分数60%乙醇溶液,吸附温度为30℃,解吸温度为60℃。该工艺生产的黄酮产品为黄色粉末,回收率为81.90%,纯度为78.04%。  相似文献   

20.
研究大孔吸附树脂分离纯化菜芙蓉黄酮的最佳工艺条件。以总黄酮吸附量和解吸量为指标,进行静态吸附和解吸试验对14种型号大孔树脂进行筛选,再通过动态吸附和解吸试验对纯化工艺参数进行优化。Z801大孔树脂对菜芙蓉总黄酮的吸附与解吸性能最佳。HZ801纯化菜芙蓉黄酮的最佳工艺条件为:上样浓度为1 mg/m L,上样流速2 m L/min,上样量为140 m L;依次用2 BV水洗脱,用70%乙醇以2 m L/min的速率洗脱2.2 BV。在优化工艺条件下,菜芙蓉黄酮的平均吸附率是95.03%,纯化倍数4.04。HZ801型大孔树脂富集黄酮的效果最佳,是一种较理想的分离纯化介质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号