首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change may have strong impacts on water resources in developing countries. In North Africa, many dams and reservoirs have been built to secure water availability in the context of a strong inter-annual variability of precipitation. The goal of this study is to evaluate climate change impacts on surface water resources for the largest dams in Algeria, Morocco and Tunisia using high-resolution (12 km) regional climate models (RCM) simulations. To evaluate the atmospheric demand (evapotranspiration), two approaches are compared: The direct use of actual evaporation simulated by the RCMs, or estimation of reference evapotranspiration computed with the Hargreaves-Samani (HAR) equation, relying on air temperature only, and the FAO-Penman Monteith (PM) equation, computed with temperature, wind, radiation and relative humidity. Results showed a strong convergence of the RCM simulations towards increased temperature and a decrease in precipitation, in particular during spring and the western part of North Africa. A decrease in actual evapotranspiration, highly correlated to the decrease in precipitations, is observed throughout the study area. On the opposite, an increase in reference evapotranspiration is observed, with similar changes between HAR and PM equations, indicating that the main driver of change is the temperature increase. Since the catchments are rather water-limited than energy-limited, despite opposite projections for actual and reference evapotranspiration a decrease of water availability is projected for all basins under all scenarios, with a strong east-to-west gradient. The projected decrease is stronger when considering reference evapotranspiration rather than actual evaporation. These pessimistic future projections are an incentive to adapt the current management of surface water resources to future climatic conditions.  相似文献   

2.
《Journal of Hydro》2014,8(4):358-366
Assessments of the variation and vulnerability of water resources due to climate change are essential for future planning in agriculture. In this study, the impacts and uncertainty associated with climate change on water resources in the Geumho River Basin were measured based on the relative change in the mean annual runoff and the aridity index. Statistically adjusted and downscaled multi-ensemble General Circulation Model (GCM) predicted rainfall and temperature data for three representative concentration pathways (RCPs) (RCP2.6, 4.5 and 8.5) were applied to two lumped parameter conceptual rainfall runoff models. The results revealed considerable uncertainty in the projected temperature, rainfall, potential evapotranspiration (PET), runoff and aridity index (AI). Additionally, temperature and rainfall were predicted to increase significantly in the future. The PET was projected to increase by a mean (range) of 9% (7–12%), 18% (9–30%) and 25% (8–49%), while the mean annual runoff was projected to change by a mean (range) of 1% (−33 to 40%), −9% (−47 to 27%) and −4% (−44 to 35%), in the 2030s, 2060s and 2090s, respectively. The AI was projected to decrease in the future, particularly for the RCP8.5. Overall, the results of this study indicate that climate change will most likely lead to lower water resource levels than are currently present in the Geumho River Basin.  相似文献   

3.
基于SWAT模型的秦淮河流域气候变化水文响应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解气候变化对水文水资源的影响机理,以秦淮河流域为研究区构建SWAT模型,使用SWAT-CUP对模型进行参数敏感性分析、率定及验证,并采用任意假设法设计未来气候情景,分析温度及降雨变化对流域径流及实际蒸散发量的影响。结果表明:模型在月径流模拟中具有较高的精度,适用于秦淮河流域气候变化下的水文响应研究;气温降低或降雨量上升都会引起流域径流量增加,反之则减少;实际蒸散发量与降雨量正相关,而实际蒸散发量对气温变化的响应不明显;平水年径流量对降雨量变化的响应较强,枯水年径流量对温度变化的响应较强;枯水年实际蒸散发量对降雨量变化的响应较强。  相似文献   

4.

Most of the commonly used hydrological models do not account for the actual evapotranspiration (ETa) as a key contributor to water loss in semi-arid/arid regions. In this study, the HEC-HMS (Hydrologic Engineering Center Hydrologic Modeling System) model was calibrated, modified, and its performance in simulating runoff resulting from short-duration rainfall events was evaluated. The model modifications included integrating spatially distributed ETa, calculated using the surface energy balance system (SEBS), into the model. Evaluating the model’s performance in simulating runoff showed that the default HEC-HMS model underestimated the runoff with root mean squared error (RMSE) of 0.14 m3/s (R2?=?0.92) while incorporating SEBS ETa into the model reduced RMSE to 0.01 m3/s (R2?=?0.99). The integration of HECHMS and SEBS resulted in smaller and more realistic latent heat flux estimates translated into a lower water loss rate and a higher magnitude of runoff simulated by the HECHMS model. The difference between runoff simulations using the default and modified model translated into an average of 95,000 m3 runoff per rainfall event (equal to seasonal water requirement of ten-hectare winter wheat) that could be planned and triggered for agricultural purposes, flood harvesting, and groundwater recharge in the region. The effect of ETa on the simulated runoff volume is expected to be more pronounced during high evaporative demand periods, longer rainfall events, and larger catchments. The outcome of this study signifies the importance of implementing accurate estimates of evapotranspiration into a hydrological model.

  相似文献   

5.
Given the large share of the water budget contributed by evapotranspiration (ET), accurately estimating ET is critical for hydro-climate change studies. Routinely, hydrologic models use temperature proxy relationships to estimate potential evapotranspiration (PET) when forced using GCM/RCM projections of precipitation and temperature. A limitation of this approach is that the temperature proxy relationships do not account for the conservation of energy needed to estimate ET consistently in climate change scenarios. In particular, PET methods using temperature as a proxy fail to account for the negative feedback of ET on surface temperature. Using several GCM projections and a hydrologic model developed for the Great Lakes basin watersheds, the NOAA Large Basin Runoff Model (LBRM), the importance of maintaining a consistent energy budget in hydrologic and climate models is demonstrated by comparing runoff projections from temperature proxy and energy conservation methods. Differences in hydrologic responses are related to watershed characteristics, hydrologic model parameters and climate variables. It is shown that the temperature proxy approach consistently leads to prediction of relatively large and potentially unrealistic reductions in runoff. Therefore, hydrologic projections adhering to energy conservation principles are recommended for use in climate change impact studies.  相似文献   

6.
In the present study, spatio-temporal variability of hydrological components under climate change is analysed over Wainganga River basin, India. In order to address the climate change projection, hydrological modelling is carried out using a macro scale, semi-distributed three (3)-Layer Variable Infiltration Capacity (VIC-3 L) model. The high-resolution (0.5o?×?0.5o) meteorological variables are divided into multiple periods to calibrate and validate the VIC-3 L model. The future projections (2020–2094) of the water balance components are achieved using the high resolution hydrological variables from the COordinated Regional Downscaling EXperiment (CORDEX) dataset under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The uncertainty associated with the multi-model projections are evaluated using Reliability Ensemble Averaging (REA) and the bias correction is accomplished with non-parametric quantile mapping. A probabilistic based areal drought index is also computed for different scenarios using Standardized Precipitation Evapotranspiration Index (SPEI). From the results, it is observed that amount of rainfall, evapotranspiration, and runoff has increased over the basin with no change in the spatial pattern. However, temporal variability is noticed with an increasing trend for rainfall and runoff in the non-monsoon season than the monsoon. Streamflow is expected to increase significantly, especially for medium to low flows (those occurring between 0.2 and 0.9 probability of exceedance in a Flow Duration Curve). In addition, the area under the drought condition has decreased under the projected climate scenarios.  相似文献   

7.

The objective of this study was to determine the role of spring catchment water storage on the evolution of low flows in central European mountainous catchments. The study analysed 58 catchments for which catchment storage, represented by snow, soil water and groundwater storages, was determined by the HBV hydrological model over a 35-year period. The spring catchment storage was related to several streamflow indices describing low flow periods using the mutual information criterion. The mean runoff in the summer and autumn periods was mostly related to rainfall sums from the respective season. The median relative contribution of rainfall to the total mutual information value was 48.4% in summer, and 44.2% in autumn period, respectively. The relative contribution of soil water and groundwater storages was approximately 25% for each of the components. In contrast, the minimum runoff, its duration and deficit runoff volume, were equally related to both catchment storage and seasonal rainfall, especially in the autumn period.

  相似文献   

8.
Scarcity of water is now the biggest threat in many parts of the world, specially in arid and semi arid regions. Establishing balance between water resources and the demands in a catchment scale basis could be one of the most important strategies to overcome this problem. In this regard, determination and analysis of water balance components (inputs and outputs) would be necessary. This study has focused on estimation of water balance components in arid-mountainous catchment of Manshad in Yazd province of Iran, during the year 2006–2007 using remote sensing and GIS techniques. To estimate actual evapotranspiration (ETa) of the catchment, time series of MODIS images were obtained and used via Surface Energy Balance Algorithm for Land (SEBAL) approach. Measured precipitation (P) and runoff (R) data of the catchment were also used to calculate water balance equation components. Results indicated that a large volume of catchment water (about 70%) is wasted through evapotranspiration, while the rainfall is not enough to compensate this volume of water during the year. It seems that the negative (descending) trend has become dominant to the water budget of the area and gradually moves to harsh conditions of water shortage in future decades. Therefore, some actions would be necessary to overcome the problem. Water conservation strategies‚ improvement of water use efficiency, and control on agricultural field expansions are some solutions that could be advised for the studied catchment.  相似文献   

9.
Future projections of climate variables are the key for the development of mitigation and adaptation strategy to changing climate. However, such projections are often subjected to large uncertainties which make implementation of climate change strategies on water resources system a challenging job. Major uncertainty sources are General Circulation models (GCMs), post-processing and climate heterogeneity based on catchment characteristics (e.g. scares data and high-altitude). Here we presents the comparisons between different GCMs, statistical downscaling and bias correction approaches and finally climate projections, with the integration of gridded and converted (monthly to daily) data for a high-altitude, scarcely-gauged Jhelum River basin, Pakistan. Current study relies on climate projections obtained from factorial combination of 5-GCMs, 2 statistical downscaling and 2 bias correction methods. In addition, we applied bias corrected APHRODITE, converted daily data using MODAWEC model and observed data. Further, five GCMs (CGCM3, HadCM3, CCSM3, ECHAM5 and CSIRO-MK3.5) were tested to scrutinize two suitable GCMs integrated with Statistical Downscaling Model (SDSM) and Smooth Support Vector Machine (SSVM). Results illustrate that the CGCM3 and HadCM3 were suitable GCMs for selected study basin. Both downscaling techniques are able to simulate precipitation, however, SSVM performed slightly better than SDSM. We found that the integration of CGCM3 with SSVM (SSVM-CGCM3) generates precipitation and temperature better than the CGCM3 (SDSM-CGCM3) and HadCM3 (SDSM-HadCM3) with SDSM. Furthermore, the low elevation stations were influenced by monsoon, significantly prone to rise in precipitation and temperature, while high-altitude stations were influenced by westerlies circulations, less prone to climate change. The projections indicated rise in basin-wide annual precipitation by 25.51, 36.76 and 45.52 mm and temperature by 0.64, 1.47 and 2.79 °C, during 2030s, 2060s and 2090s, respectively. The methods and results of this study can be adopted to evaluate climate change implications in the catchments of characteristics similar to Jhelum River basin.  相似文献   

10.
A successful water management scheme for irrigated crops requires an integrated approach, which accounts for water, soil, and crop management. SIMETAW# is a user friendly soil water balance model that assesses crop water use, irrigation requirements, and generates hypothetical irrigation schedules for a wide range of crops experiencing full or deficit irrigation. SIMETAW# calculates reference evapotranspiration (ETo), and it computes potential crop evapotranspiration (ETc), and the evapotranspiration of applied water (ETaw), which is the amount of irrigation water needed to match losses from the effective soil root zone due to ETc that are not replaced by precipitation and other sources. Using input information on crop and soil characteristics and the distribution uniformity of infiltrated irrigation applications in full or deficit conditions, the model estimates the mean depth of infiltrated water (IW) into each quarter of the field. The impact of deficit irrigation on the actual crop evapotranspiration (ETa) is computed separately for each of the four quarters of the cropped field. SIMETAW# simulation adjusts ETo estimates for projected future CO2 concentration, and hence the model can assess climate change impacts on future irrigation demand allowing the user to propose adaptation strategies that potentially lead to a more sustainable water use. This paper discusses the SIMETAW# model and evaluates its performance on estimating ETc, ETa, and ETaw for three case studies.  相似文献   

11.
A Water Budget Model for the Yun-Lin Plain,Taiwan   总被引:2,自引:0,他引:2  
A water budget model is proposed to estimate the infiltration, runoff, evapotranspiration and recharge in vadose zone and apply to a case study. The instantaneous redistribution of infiltrated water is assumed to be uniform and a linear relationship between evapotranspiration and effective saturation is imposed. Infiltration is described by Philip's solution in conjunction with the time compression approximation method during rainfall. Runoff occurred when rainfall rate exceeds soil-infiltrating rate. The soil profile drainage was determined by evapotranspiration and recharge. Cumulative infiltration, runoff, evapotranspiration and recharge are estimated with different climate conditions and different soil hydraulic properties during simulating period. Analysis shows that initial effective saturation affects the estimated results in this water budget model in the short or mid-term simulations while not in long-term simulations. The climatic conditions of Yun-Lin plain area, Taiwan from 1991 to 1997 are used by referring to hydrological and hydrogeological parameters to provide the computational procedures of this study for estimating recharge. Results showed that the amount of annual recharge was affected by the amount of annual rainfall and soil properties.  相似文献   

12.
Statistically and dynamically downscaled climate projections are the two important data sources for evaluation of climate change and its impact on water availability, water quality and ecosystems. Though bias correction helps to adjust the climate model output to behave more similarly to observations, the hydrologic response still can be biased. This study uses Variable Infiltration Capacity (VIC) model to evaluate the hydrologic response of the trans-state Oologah Lake watershed to climate change by using both statistically and dynamically downscaled multiple climate projections. Simulated historical and projected climate data from the North American Regional Climate Change Assessment Program (NARCCAP) and Bias-Corrected and Spatially Downscaled–Coupled Model Intercomparison Phase 3 (BCSD-CMIP3) forced the hydrologic model. In addition, different river network upscaling methods are also compared for a higher VIC model performance. Evaluation and comparison shows the following the results. (1) From the hydrologic point of view, the dynamically downscaled NARCCAP projection performed better, most likely in capturing a larger portion of mesoscale-driven convective rainfall than the statistically downscaled CMIP3 projections; hence, the VIC model generated higher seasonal streamflow amplitudes that are closer to observations. Additionally, the statistically downscaled GCMs are less likely to capture the hydrological simulation probably due to missing integration of climate variables of wind, solar radiation and others, even though their precipitation and temperature are bias corrected to be more favorably than the NARCCAP simulations. (2) Future water availability (precipitation, runoff, and baseflow) in the watershed would increase annually by 3–4 %, suggested by both NARCCAP and BCSD-CMIP3. Temperature increases (2.5–3 °C) are much more consistent between the two types of climate projections both seasonally and annually. However, NARCCAP suggested 2–3 times higher seasonal variability of precipitation and other water fluxes than the BCSD-CMIP3 models. (3) The hydrologic performance could be used as a potential metric to comparatively differentiate climate models, since the land surface and atmosphere processes are considered integrally.  相似文献   

13.
In this study, the calibration and validation period with stable underlying surface conditions was determined by using a statistically significant change point of the annual streamflow in several catchments of the Wei River basin (WRB). The effects of climate changes and human activities on streamflow were estimated by using the sensitivity-based method and the dynamic water balance model, respectively. The contributions of climate effects and human activities effects on streamflow were also investigated. The results showed that almost all the catchments exhibited significant decreasing trend of streamflow in the early 1990s. The streamflow was more sensitive to changes in precipitation than changes in potential evapotranspiration (PET). Effects of climate due to changes in precipitation and PET are weak in Linjiacun, Weijiabao and Xianyang catchments, while it is strong in the catchments controlled by other hydrological stations, accounting for more than 40 % of streamflow reduction. Effects of human activities on streamflow in Linjiacun, Weijiabao, Xianyang and Zhangjiashan catchments accounted for more than 50 % of the streamflow reduction. The study provides scientific foundation to understand the causes of water resources scarcity and useful information for the planning and management of water resources in the ecological fragile arid area.  相似文献   

14.
ABSTRACT

Global climate change associated with rising atmospheric concentrations of greenhouse gases may alter regional temperature and precipitation patterns. Such changes could threaten the availability of water resources/Or rapidly growing Third World cities, many of which are already experiencing severe water supply deficiencies. This paper investigates the potential impacts of climate change on water resource availability for two Indian cities, Bombay and Madras. The paper begins by discussing future trends for population growth and water demand in each city. Nat, using climate change scenarios based on three general circulation models (GCMs), the paper assesses how climate change may affect water availability in the two urban regions. The assessment is conducted through the use of a monthly dryness index measuring potential evapotranspiration and precipitation. For each region, the dryness index under “normal” climatic conditions is compared with indexes created using GCM scenarios. The results of this assessment indicate that, unless large increases in regional precipitation accompany climate warming, higher rates of evapotranspiration will mean reduced water availability for both cities. The paper concludes by discussing some implications for water management in Third World cities.  相似文献   

15.
分析了新疆河径流的分配和年际变化特征,在此基础上,探讨了冰川波动与径流对气候变化的响应及冰川波动对径流的影响。分析得出的主要结论有:不同流域的冰川在不同时期的变化不一致;新疆气温、降水的季节及年际变化特征显著,径流年内分配较均匀,径流补给来源以降雨为主,高山冰雪(季节性积雪)融水为辅;年径流量未发生突变,有较明显的周期成分。冰川变化在不同时期,对气温具有较好的响应,且冰川对气温的敏感性高于降水。降水变化对径流变化的影响明显强于气温;径流的大小主要受降水影响,但在个别异常年份,冰川变化对径流具有极其显著的作用。  相似文献   

16.
黄河源区径流时空特性及相关因素分析   总被引:5,自引:0,他引:5  
利用有关软件,选定径流过程中的显著性因子如上年降水量、汛期月降水量及上月降水量、地温等,分析了黄河源区径流的一般特点、统计特征以及径流与降水、地温的相关性。结果表明:黄河源区汛期降水一径流的相关性较好,年降水量与径流过程的相关系数一般较大,说明地下水补给的作用显著;黄河沿以上地区径流一降水的相关性较差,但与地温的相关性较好,说明下垫面条件对径流调蓄的作用显著。  相似文献   

17.
Low Flows Regionalization in North-Western Italy   总被引:3,自引:0,他引:3  
Prediction of low flows in ungauged catchments is needed in many branches of water resources management, including water availability and river ecology studies. In this paper we analyze the regional variability of q 95, i.e., the specific discharge that is exceeded 95% of the time, in North-Western Italy (Piemonte and Valle d’Aosta Regions). Multiple regressions with morphoclimatic catchment characteristics are applied in subregions obtained through four classification methods: Seasonality Indices (SI), Classification and Regression Trees (CRT), Residual Pattern Approach (RPA) and Weighted Cluster Analysis (WCA). All the classification methods separate the South-Eastern Apennine-Mediterranean area from the rest of the study domain (the Alps mountain range), even if they use different criteria to carry out this division (e.g., the percentage of forest, seasonality of low flows, combination of several parameters). In the Apennine-Mediterranean part of the area, low flows occur in summer with a long period of drought and are mainly due to dry climate, moderate snowpack storage and high evapotranspiration. In Alpine catchments low flows occur in winter and vary according to precipitation, elevation, interactions with aquifers and land cover. Within the Alpine mountain range the CRT algorithm identifies a number of small high-elevation catchments in which the intense drought period during winter has the soil freezing processes as the driving force. From a statistical point of view, the CRT model outperforms the models obtained by the other classification techniques in terms of explained variance (69%). Because of this, and given the meaningful hydrological interpretation of the results, we use the CRT model for the regionalization of q 95 in Piemonte and Valle d’Aosta. Lastly, as operational procedure for future low flow regionalization studies, we suggest that more classification methods should be applied to assist the critical analysis of the results.  相似文献   

18.
《Journal of Hydro》2014,8(3):234-247
This study models the effect of climate change on runoff in southeast Korea using the TANK conceptual rainfall-runoff model. The results are assessed using the indicators of hydrological alteration (IHA) developed by U.S. Nature Conservancy. Future climate time series are obtained by scaling historical series, provided by four global climate models (GCMs, IPCC, 2007) and three greenhouse gas (GHG) emissions scenarios (IPCC, 2000), to reflect a maximum increase of 3.6 °C in the average surface air temperature and 33% in the annual precipitation. To this end, the spatio-temporal change factor method is used, which considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as the daily rainfall distribution. In this study, the variance range for precipitation is from +3.55% to +33.44% compared to the present for years between 2071 and 2100. The variance range for the daily mean temperature is estimated between +1.59 °C and +3.58 °C. Although the simulation results from different GCMs and GHG emissions scenarios indicate different responses of the flows to the climate change, the majority of modeling results show that there will be more runoff in southeast Korea in the future. According to the analysis results, the predicted impacts of hydrological alteration caused by climate change on the aquatic ecosystem are as follows: 1) an increase in the availability of aquatic ecosystem habitats in Nakdong River in future summers and winters, 2) an increase in stress on the aquatic ecosystem due to extremely high stream flow, 3) an increase in the stress duration of flood events for the Nakdong River downstream and 4) an increase in aquatic ecosystem stress caused by rapid increases or decreases in stream flow.  相似文献   

19.

Landuse/landcover change (LULCC) and climate change (CC) impacts on streamflow in high elevated catchments are very important for sustainable management of water resources and ecological developments. In this research, a statistical technique was used in combination with the Soil and Water Assessment Tool (SWAT) to the Upstream Area of the Yangtze River (UAYR). Different performance criteria (e.g., R2, NSE, and PBIAS) were used to evaluate the acceptability of the model simulation results. The model provided satisfactory results for monthly simulations in the calibration (R2; 0.80, NSE; 0.78 and PBIAS; 22.3%) and the validation period (R2; 0.89, NSE; 0.75 and PBIAS; 19.1%). Major landuse/landcover transformations from 1990 to 2005 have occurred from low grassland to medium grassland (2%) and wetlands (0.9%), bare land to medium grassland (0.2%), glaciers to wetland (16.8%), and high grassland to medium grassland (5.8%). The results show that there is an increase in average annual runoff at the Zhimenda station in UAYR by 15 mm of, which approximately 98% is caused by climate change and only 2% by landuse/landcover change. The changes evapotranspiration are larger due to climate change as compared to landuse/landcover change, particularly from August to October. Precipitation and temperature have increased during these months. On the contrary, there has been a decrease in evapotranspiration and runoff from October to March which depicts the intra-annual variations in the vegetation in the study area.

  相似文献   

20.
叶尔羌河径流演变规律与变异特征   总被引:2,自引:0,他引:2       下载免费PDF全文
科学认识气候变化与人类活动影响下,以径流为主要指征的水循环过程及其变化,是合理利用水资源的前提,对于认识水文机理,应对径流变化具有重要价值。选取干旱区内陆河流叶尔羌河卡群断面1957-2015年长系列实测月径流系列、1962-2015年长系列实测月气温与降水系列,采用年内分配完全调节系数Cr、年内分配不均匀系数Cn、相对变化幅度Cm、集中度Cd、集中期D、年际径流均值、最大流量及出现时间、最小流量及出现时间、年际极值比等多指标,运用Mann-Kendall法、累积距平法、R/S法、排列熵法等多方法,揭示叶尔羌河径流演变规律与变异特征,并进行归因分析。结果表明:近60年来,叶尔羌河流域径流量年内分配趋均匀化、年际变化呈显著增多趋势且为正持续性,其中1957-1961年和1993-2015年为显著径流增加时段;Mann-Kendall法与排列熵法均证实了1997年为该径流序列的突变点也为变异点;气温,特别是夏季7-8月平均气温(相关系数为0.81)为叶尔羌河径流量变化的主要影响因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号