首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探究红蓝草多糖的最佳提取工艺及其体外抗氧化活性。试验以红蓝草为原料,探究料液比、浸提温度、浸提时间、浸提次数对红蓝草多糖得率的影响,并结合响应面法优化红蓝草多糖提取工艺,通过测定红蓝草多糖对DPPH·、·OH、ABTS+·等自由基的清除能力探究其抗氧化活性。结果表明:在料液比1:31 g/mL、浸提温度85 ℃、浸提时间118 min、提取3次的条件下,红蓝草多糖得率最高,可达11.05%。在一定范围内,红蓝草多糖清除自由基能力与多糖的浓度呈量效关系,红蓝草多糖溶液清除DPPH · 、 · OH和ABTS + ·等自由基的IC50值分别为0.18、0.73、0.64 mg/mL,说明红蓝草粗多糖具有一定的抗氧化活性。通过探究红蓝草多糖提取的最佳工艺及抗氧化活性,为今后红蓝草多糖的进一步开发与应用提供理论基础和参考。  相似文献   

2.
目的:通过响应面法获得鳞柄小奥德蘑多糖的最佳提取工艺,并确定其理化性质和营养成分含量,为日后研究提供理论基础依据。方法:根据Box-Benhnken设计原则,以提取时间、提取温度、提取料液比进行3因素3水平研究,通过Design-Expert软件分析获得的最佳提取条件;通过苯酚硫酸法计算鳞柄小奥德蘑多糖中糖含量;紫外光谱扫描确定多糖中是否含有蛋白质,以考马斯亮蓝法测定蛋白含量;间羟基联苯法测定多糖中糖醛酸含量;全自动氨基酸分析仪测定其中氨基酸含量;原子吸收分光光度法测量微量元素含量。结果:多糖最佳提取条件为提取时间3 h、提取温度80℃、提取液料比为35:1,此条件下多糖提取率为8.72%;鳞柄小奥德蘑多糖中糖含量为28.30%;多糖在280 nm处有明显的紫外吸收峰,测得蛋白质含量为9.40%;多糖中几乎不含糖醛酸;多糖中富含赖氨酸、色氨酸等8种人体必需氨基酸及多种其他氨基酸;多糖中含有铁、铜、锌等多种微量元素。结论:鳞柄小奥德蘑多糖的多种测试结果均表明其理化性质优良,富含多种营养成分,具有广泛的开发空间。  相似文献   

3.
目的:研究纤维素酶提取山银花多糖的最佳工艺条件,并探讨其体外抗氧化活性。方法:以山银花多糖得率为响应值,在单因素试验基础上,以酶解时间、液料比、酶解p H、酶添加量为试验因素,采用响应面法建立数学模型,筛选最佳提取工艺条件。山银花多糖抗氧化活性检测使用DPPH、·OH和O_2~-·自由基清除能力体系。结果:纤维素酶酶解提取山银花多糖最佳条件为:酶解时间80 min,液料比14.6 mL/g,酶解pH 5.2,酶添加量8.0 mg/mL,酶解温度50℃,在此条件下山银花多糖实际得率为15.76%,与理论预测值16.05%相对误差小于5%。液料比对多糖得率影响最显著,酶添加量、酶解pH次之,酶解时间影响最小。山银花多糖具有较强的抗氧化活性,对DPPH、·OH和O_2~-·自由基清除的半数抑制浓度IC_(50)分别为0.941、1.238、1.786 mg/mL。结论:获得山银花多糖纤维素酶酶法提取的最佳条件,该工艺条件方便可行,获得的多糖具有较强的自由基体外清除能力。  相似文献   

4.
研究纤维素酶提取芒果果皮有效成分多糖的最佳条件,并探讨其体外抗氧化活性。以芒果果皮多糖得率为响应值,在单因素试验基础上,以酶解pH值、酶解时间、酶添加量、液料比为试验因素,采用响应面法建立数学模型,筛选最佳提取工艺条件;芒果果皮多糖体外抗氧化活性检测使用DPPH·和·OH清除能力体系。纤维素酶酶解提取芒果果皮多糖最佳条件为:酶解pH值5.0,酶解时间100.0 min,酶添加量10.5 mg/mL,液料比7.6∶1(mL/g)、酶解温度45℃,在此条件下芒果果皮多糖得率为5.17%,与理论值5.28%相对误差小于5%。酶解时间对多糖得率影响最显著,液料比、酶添加量次之,酶解pH值影响最小。芒果果皮多糖具有较强的体外抗氧活性,对DPPH·和·OH清除的半数抑制浓度IC50分别为1.385、3.612 mg/mL,但与维生素C比较,抗氧化活性较弱。  相似文献   

5.
以滑子菇为原料,通过正交实验获得滑子菇多糖的超声波辅助提取最佳工艺,并对清除DPPH·、O2-·和·OH和还原能力进行测定超声处理后,采用水提取法,并用苯酚-硫酸法测定滑子菇多糖中多糖的得率.通过单因素实验和正交实验考察超声时间、超声功率以及液料比对滑子菇多糖得率的影响,确定超声频率为80Hz、超声时间为15min以及液料比为20∶1是最佳工艺,多糖得率为11.219% 通过对清除自由基和还原能力评价,结果显示滑子菇多糖具有一定的抗氧化活性  相似文献   

6.
为了提高双孢菇菇柄的综合利用率,以双孢菇废弃菇柄为原料,通过单因素实验探讨了超声功率、超声提取时间、液固比、超声提取次数、醇沉体积对双孢菇菇柄多糖得率的影响,采用正交实验对其提取工艺参数进行优化,并对多糖的抗氧化活性进行研究。结果表明,在提取次数为2次、乙醇用量为4倍体积时,最佳提取工艺参数为超声功率700 W、超声提取时间50 min、液固比为20:1(mL·g-1),此时双孢菇菇柄多糖得率可达5.35 g·100 g-1。与抗坏血酸相比,双孢菇菇柄多糖具有较强的DPPH·清除能力,对·OH的清除能力和还原能力较弱。  相似文献   

7.
目的:探讨芦笋多糖的提取纯化方法及其体外抗氧化活性。方法:采用L9(34)正交试验设计,考察提取温度、提取时间、料液比、提取次数等因素对芦笋粗多糖浸提效果的影响。进一步以酶法除蛋白纯化粗多糖,探索3种蛋白酶作用的最佳工艺条件及其除蛋白效果,用硫酸-苯酚法和DNS法定量分析粗多糖;并研究芦笋多糖对自由基的清除作用以及对红细胞溶血、肝线粒体肿大的抑制作用。结果:在提取温度100℃、提取时间3h、料液比1:20(g/mL),提取1次条件下,芦笋粗多糖的得率最高,为(8.50±1.07)%,经碱性蛋白酶纯化后,纯度可达(52.40±0.47)%。芦笋多糖在体外体系中可显著清除DPPH自由基、 ·OH、O2- ·,并具有抑制红细胞溶血,抑制肝线粒体肿大的作用。结论:芦笋多糖具有较好的抗氧化活性。  相似文献   

8.
分别采用超声辅助离子液体法(L法)和酶解法(M法)提取羊肚菌多糖。以多糖得率为指标,在单因素试验的基础上通过响应面法优化提取工艺,并研究羊肚菌多糖的抗氧化活性。结果表明:L法最佳提取工艺为料液比1∶26(g/mL)、超声温度55℃、离子液体体积1.6 mL、超声时间32 min,多糖得率为18.10%±0.25%;M法最佳提取工艺为料液比1∶21(g/mL)、酶解时间71 min、超声时间21 min、纤维素酶添加量0.85%(以提取液质量为基准),多糖得率为7.86%±0.13%。抗氧化活性试验表明,羊肚菌多糖具有较好地清除DPPH·和·OH的能力,抗氧化活性较好。  相似文献   

9.
目的:研究纤维素酶提取地桃花多糖的最佳条件,并探讨其体外抗氧化活性。方法:以地桃花多糖得率为响应值,在单因素试验基础上,以液料比、酶解温度、酶解时间、酶添加量为试验因素,采用响应面法建立数学模型,筛选最佳提取工艺条件;并使用DPPH和·OH自由基清除能力体系检测地桃花多糖的抗氧化活性。结果:纤维素酶酶解提取地桃花多糖最佳条件为:酶添加量10.8 mg/mL、酶解时间72 min、液料比7:1 mL/g、酶解温度43℃、pH为5.0,在此条件下地桃花多糖得率为13.32%,与理论值13.37%相对误差小于5%。地桃花多糖具有较强的抗氧活性,对DPPH和·OH自由基清除的半数抑制浓度IC50分别为1.082、3.202 mg/mL,但与维生素C比较,抗氧化活性较弱。结论:通过响应面法获得地桃花多糖纤维素酶酶法提取的最佳条件,该工艺条件方便可行,提取到的多糖具有较强的自由基清除能力。  相似文献   

10.
为了考察超声辅助水提法对胭脂果多糖得率的影响,本研究应用单因素实验对超声功率、超声时间、提取温度和液料比展开了研究。在此基础上,采用响应面法优化了工艺参数,并分析了胭脂果粗多糖的体外抗氧化活性。结果表明,当胭脂果多糖最佳提取工艺为超声时间6 min、超声功率97 W、提取温度86℃、提取时间150 min和液料比40 mL/g时,粗多糖得率可达12.55%±0.31%,仅低于预测值0.23%,而且其中多糖含量达到了(413.75±0.41)mg/g,说明该模型能较好地预测实际得率。胭脂果多糖对DPPH·和·OH以及总还原能力与质量浓度呈量效关系,对DPPH·和·OH的IC50分别为0.0203、1.44 mg/mL。因此,响应面法优化超声辅助水提法提取胭脂果多糖工艺方便可行,得到的多糖有较好的体外抗氧化活性,可为进一步的合理开发利用提供理论依据。  相似文献   

11.
大球盖菇多糖超声波提取及抗氧化活性   总被引:1,自引:0,他引:1  
以大球盖菇为原料,通过正交试验L9(34)研究超声波提取多糖的工艺条件。结果表明,最佳提取工艺条件为提取温度65℃、提取时间1.0 h、超声波功率600 W、料液比1∶35(g/mL),此条件下,大球盖菇多糖得率为8.16%。提取效果影响大小的先后顺序为提取时间>提取温度>提取功率>料液比。应用化学发光法对大球盖菇粗多糖的清除·OH和·O2-自由基的能力进行了研究,结果表明:大球盖菇粗多糖对·OH和·O2-自由基均具有明显的清除能力,清除·O2-自由基的IC50为108.60μg/mL,清除·OH自由基的IC50为345.98μg/mL,大球盖菇粗多糖对·O2-自由基的清除能力是对·OH自由基的清除能力的3.2倍。  相似文献   

12.
目的:研究白及多糖的超声-微波协同提取工艺优化及其抗氧化活性。方法:以多糖得率为考察指标,通过单因素实验对料液比、浸泡时间、微波功率和协同提取时间4个影响因素进行考察,采用正交实验设计对超声波-微波协同提取白及多糖的工艺条件进行优化,并研究白及多糖对羟基自由基(·OH)、超氧阴离子(O_2~-·)和1,1-二苯基-2-苦肼基自由基(DPPH·)的清除率以评价其体外抗氧化活性。结果:最佳提取工艺条件为:液料比20∶1 m L/g,浸泡时间6 min,微波功率200 W,协同提取时间5 min,该工艺条件下多糖得率达6.98%±0.19%。单独超声波提取法和单独微波提取法的多糖得率仅为超声-微波协同提取法的46.28%和87.96%,表明超声-微波协同提取优于单独超声波提取和单独微波提取。抗氧化活性研究表明在实验范围内,白及多糖对O-2·无明显清除作用,但对·OH和DPPH·具有明显的清除作用,采用超声-微波协同提取法提取的白及多糖较微波提取法具有更高的·OH和DPPH·清除活性,当多糖浓度为0.5 mg/m L时,对·OH和DPPH·清除率分别为92.82%和74.21%。结论:超声-微波协同提取具有省时高效的特点,特别适用于多糖类物质的提取。  相似文献   

13.
为了探索姬松茸菌丝体多糖的最佳提取工艺,并对其多糖进行抗氧化活性评价,采用超声辅助提取方法,以温度、时间、料液比、次数进行单因素实验;在此基础之上,以姬松茸多糖得率为响应面值,运用响应面法优化姬松茸多糖的提取工艺条件;通过测定多糖清除DPPH自由基、羟自由基(·OH)、超氧阴离子(O-2)自由基的能力来评价其抗氧化活性,并与维生素C进行对比。实验结果表明,姬松茸多糖最优提取工艺条件:提取温度94℃、提取时间2.1 h、料液比1∶35(g∶m L)、提取次数3次,姬松茸多糖的得率预测值为9.41%,验证值为9.30%,与预测值相对误差为1.17%,说明优化工艺可行;姬松茸多糖对DPPH自由基、羟自由基(·OH)、超氧阴离子(O_2~-)自由基都有一定的清除能力,其中IC_(50)值分别是0.184、0.316和0.198 mg/m L。但与维生素C比较,其抗氧化活性较弱。  相似文献   

14.
利用响应面法优化龙葵果多糖提取工艺。单因素实验研究提取时间、乙醇浓度以及料液比对龙葵果多糖提取工艺的影响,在此基础上,应用Design-Expert8.0.6建立数学模型,进行3因素3水平的响应面分析,并对龙葵果多糖进行了抗氧化的体外活性实验。结果表明:提取龙葵果多糖的最佳条件为:提取时间5 h、乙醇浓度94%、料液比1:20 g/mL,此条件下进行重复实验,其龙葵果中多糖得率为4.07 mg/g。在抗氧化实验中,龙葵果多糖对DPPH自由基和·OH均有一定的清除能力,其清除DPPH自由基和·OH的半抑制浓度(IC_(50))别为65.43 μg/mL和0.33 mg/mL。  相似文献   

15.
以水作为提取溶剂、银杏叶多糖提取率为指标,采用微波辅助提取法,在单因素试验的基础上,通过正交试验对银杏叶多糖的微波辅助提取工艺进行优化,并采用清除DPPH自由基、 ·OH和O2 ·模型对其体外抗氧化活性进行评价,并与VC进行比较。结果表明:微波辅助提取银杏叶多糖的最佳出工艺条件为微波功率480W、液料比30:1(mL/g)、提取时间8min、提取2次,多糖得率为14.70%。银杏叶多糖具有较强的清除DPPH自由基、 ·OH的能力,并与质量浓度呈一定正相关关系,清除O2 ·能力弱,清除率与多糖质量浓度的关系不显著。  相似文献   

16.
紫山药多糖超声结合酶法提取工艺优化及抗氧化活性研究   总被引:1,自引:0,他引:1  
以紫山药为实验材料,采用超声结合酶法提取多糖,用Sevag法脱蛋白,用活性炭除花青素,并对其进行体外抗氧化实验,研究了紫山药中多糖提纯工艺和体外抗氧化活性。实验结果表明,最佳工艺条件为加酶量1.5%、料液比1:10 g/m L、提取时间25 min、超声功率200 W。在上述最佳条件下,紫山药多糖平均得率为9.83%。经脱蛋白、去除花青素后的紫山药多糖粉末中多糖质量分数为58.9%。体外抗氧化实验中,紫山药多糖表现出明显的抗氧化能力,对1,1-二苯基-2-苦肼基自由基(DPPH·)的清除能力较维生素C弱,但对羟基自由基(·OH)的清除能力略强于维生素C。  相似文献   

17.
研究罗布麻多糖最佳提取工艺及其抗氧化活性。在单因素试验的基础上,采用Box-Benhnke对影响提取罗布麻多糖得率的3个主要因素进行优化,并通过DPPH·清除率、·OH清除率和铜离子还原能力试验评价罗布麻多糖的体外抗氧化活性。通过单因素试验及Box-Benhnken试验设计可知,在提取温度91℃,提取时间1.75 h,料液比1∶82(g/m L)的条件下,罗布麻粗多糖的提取率为1.86%。随着样品浓度的增加,其抗氧化能力逐渐增强,其中对DPPH·的清除能力及对铜离子的还原能力较为显著,与天然抗氧化剂VC相近。  相似文献   

18.
为了优化橘皮粗多糖的微波提取工艺,评价橘皮粗多糖的抗氧化活性;通过Box-Behnken的中心组合设计及响应面法(RSM)建立了微波提取时间(min)、料液比(g/mL)、微波功率(W)的二次回归模型,对橘皮多糖的最佳微波提取工艺条件进行优化;并通过Fenton反应和有机自由基(DPPH.)法对其进行体外抗氧化活性测试。实验表明,最佳提取条件为微波提取时间18min、料液比1:25(g/mL)、微波功率250W,在该条件下橘皮粗多糖的提取得率为33.71%,高于传统回流方法(15.75%)。橘皮粗多糖对.OH和DPPH.有显著的清除作用,可以探索作为食品工业和制药行业的天然抗氧化剂。  相似文献   

19.
为了探索松乳菇菌丝体多糖的最佳提取工艺,并对其多糖进行体外抗氧化活性初步研究。采用超声波辅助浸提的方法,以温度、时间、料液比和次数进行单因素实验;在此基础之上,利用Box-Benhnken方法进行四因素三水平实验设计,以多糖得率为响应值,进行响应面分析;通过测定多糖清除DPPH自由基、OH自由基和O2-自由基的能力来评价其抗氧化活性,并与维生素C进行对比。结果表明,松乳菇多糖最佳提取工艺条件为:提取温度92.8 ℃、提取时间1.6 h、料液比1:28 (g:mL)和提取次数3次,此条件下松乳菇多糖得率预测值为10.60%,实测值为10.41%,与预测值相对误差为1.79%,说明优化工艺可行。松乳菇多糖对DPPH自由基、OH自由基和O2-自由基都具有一定的清除能力,其IC50值分别为0.855,1.147,1.126 mg/mL;但与维生素C比较,其抗氧化活性较弱。热水浸提法提取松乳菇多糖高效、简单、低成本,可用作松乳菇多糖的提取工艺;松乳菇多糖具有明显的体外抗氧化活性。  相似文献   

20.
目的:为了提高银柴胡多糖得率,对银柴胡多糖提取工艺参数进行优化,并评价其体外抗氧化活性。方法:采用超声辅助提取银柴胡多糖,在单因素实验基础上结合响应面法(Box–Behnken Response Surface)对提取工艺参数进行优化,并采用Sevag法除蛋白得银柴胡粗多糖,进一步对其抗氧化活性进行分析。结果:优化后银柴胡多糖最佳提取工艺参数为超声温度50℃、时间3.20 h、提取次数2次,在此条件下多糖得率最高,为28.24%±0.10%,多糖含量为59.13%;体外抗氧化测定结果显示,银柴胡粗多糖清除DPPH自由基、OH自由基、ABTS+自由基的IC50分别是5.47、2.40和1.44 mg/mL,表明其具有一定的抗氧化能力。结论:本研究经优化得到的银柴胡多糖提取工艺切实可行,可为银柴胡资源的开发利用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号