首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
酶解竹子溶解浆制备纳米微晶纤维素的研究   总被引:2,自引:0,他引:2  
纳米微晶纤维素(NCC)可由可再生资源制备,并且具有诸多特性,近年来成为研究热点。本文应用PFI磨对竹子溶解浆预处理,用纤维素酶水解制备纳米微晶纤维素,研究了酶解时间、酶解温度、酶用量对纳米微晶纤维素产率的影响,采用正交实验优化了工艺参数。并用高效液相色谱仪、马尔文激光粒度仪对水解液及NCC进行表征。结果表明:在酶用量2.736FPU/g、酶解时间3d、酶解温度50℃的条件下,纳米微晶纤维素的产率最高,达到19.13%;高效液相色谱分析表明水解液主要成分为葡萄糖,占总还原糖含量的71.06%,其次为纤维二糖12.39%,木糖7.68%;激光粒度分析表明NCC的Z均粒径为375.5nm。  相似文献   

2.
花生壳纳米纤维素的制备与表征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以花生壳为原料,在氢氧化钠碱解和亚氯酸钠漂白预处理基础上,通过硫酸水解方法制备花生壳纳米纤维素。采用扫描电镜、透射电镜、红外光谱、X-射线衍射和热失重分析对花生壳纳米纤维素的表征进行研究。结果表明,通过碱解和漂白处理,花生壳半纤维素和木质素被大量去除,花生壳纤维素含量由43.84%增加到86.56%,纤维素直径为10~30μm;花生壳纳米纤维素呈棒状结构,长度为90~210nm,直径为5~25nm;花生壳纳米纤维素制备过程中纤维素结构并未遭到破坏;结晶度随制备过程逐渐增高,花生壳纳米纤维素结晶度为74.71%,呈典型的纤维素I型晶型;花生壳纳米纤维素的起始热分解温度较低,当温度达到500℃时,花生壳纳米纤维素的残余率大于30%。所制备的花生壳纳米纤维素有望在可降解复合材料中得到应用。  相似文献   

3.
纳米豆渣纤维素的理化性质和表征特性   总被引:2,自引:0,他引:2  
以富含纤维素的豆渣为原料,探究纳米豆渣纤维素的理化性质,并通过透射电镜、X射线衍射仪、综合热分析仪对所制备纳米豆渣纤维素进行表征,研究其结构与性质。所制备的纳米豆渣纤维素呈微球状,颗粒尺寸为15~50nm,仍属于纤维素Ⅰ型,结晶度为43.28%,晶粒平均尺寸为5.9nm,其膨胀力、重金属离子吸附能力较超微粉碎豆渣纤维素大,持水力、持油力较原料低。  相似文献   

4.
以甘薯淀粉为原料,采用高压均质法制备甘薯纳米淀粉。研究高压均质过程中均质压力、均质次数、淀粉乳的浓度对甘薯纳米淀粉得率的影响,并进行正交实验优化。采用扫描电镜、粒度分析仪、红外光谱仪、X-射线衍射仪、热失重分析仪以及Zeta电位仪对纳米淀粉颗粒的形貌和微观结构进行表征,结果表明:在均质压力80 MPa、均质次数25次、淀粉浓度3.2 g/100 m L的条件下制备的甘薯纳米淀粉的得率达到46.12%,所得甘薯纳米淀粉呈椭圆形,平均粒径为214.3 nm,与原淀粉相比基本化学结构未发生改变,但结晶度、热分解初始温度降低;悬浮液的Zeta电位绝对值增大,在介质中的稳定性增强。  相似文献   

5.
刘洋  肖宇  马爱进  桑亚新  孙纪录 《食品科学》2022,43(19):102-109
天然几丁质具有高度有序的晶体结构以及较强的分子间和分子内氢键,其不溶于水,因此难以被酶促降解。为了提高几丁质的酶促降解效率,本研究采用超微粉碎和高压均质联合处理对几丁质进行改性,测定改性处理前后几丁质的一系列理化性质,并用傅里叶变换红外光谱、元素分析、X射线衍射、热重-差示扫描量热法和扫描电子显微镜等对几丁质的微观结构进行表征;此外,利用非特异性酶进行酶解验证联合处理对几丁质的酶解效率的影响。结果表明,与原几丁质相比,联合处理改性后的几丁质平均粒径减小99.71%,比表面积增加85.11%,孔隙体积增大29.03%,黏均分子质量降低85.80%,通过振实密度所计算膨胀比增加1.02 倍。与原几丁质相比,联合处理改性后的几丁质在3 448 cm-1和3 263 cm-1附近吸收峰强度提高,在896 cm-1处的吸收峰强度变弱;脱乙酰度没有明显变化;在(110)晶面和(020)晶面的结晶度指数分别降低了17.49%和1.31%;热稳定性被破坏;结构变得疏松多孔。联合处理改性后的几丁质更易被纤维素酶和木瓜蛋白酶降解。此外,联合处理的改性效果优于超微粉碎和高压均质单一处理。综上所述,超微粉碎和高压均质联合处理可以有效地改变天然几丁质的理化性质和微观结构,从而提高几丁质的酶解效率。  相似文献   

6.
利用超声辅助硫酸水解法制备玉米秸秆纳米纤维素(corn straw nanocellulose,NCSC),研究超声辅助酸解条件对NCSC得率的影响,并通过响应面法优化得到最佳工艺条件为:硫酸体积分数64%、超声功率160?W、酸解温度48?℃、酸解时间78?min,在此条件下制备NCSC得率达38.29%。制备的NCSC较洁白、细腻,具有较好的吸水膨胀力。通过红外光谱分析、X射线衍射和热失重分析表明,NCSC仍保持着玉米秸秆纤维素(corn straw cellulose,CSC)的基本化学结构,其结晶度(70.53%)高于CSC,同时具有较高的热分解温度。  相似文献   

7.
本文以玉米秸秆为原料,通过氢氧化钠预处理、TEMPO/NaBr/NaClO氧化体系氧化及高压均质制备纳米纤维素。利用光学显微镜、透射电镜、傅立叶红外光谱、X-射线衍射和热失重分析对玉米秸秆纳米纤维素的形态结构、化学结构、结晶性能和热稳定性进行表征和分析。结果表明,制备的玉米秸秆纳米纤维素直径大约为4~7nm,长度大约为200~500nm,结晶度为61.97%。玉米秸秆经碱预处理及TEMPO氧化后,半纤维素和木质素的脱除效果显著,而纤维素晶形没有发生变化。  相似文献   

8.
以小麦秸秆纤维素为原料,通过硫酸水解辅助高压均质的方法,分层制备小麦秸秆纳米纤维素(CNC);分别采用马尔文纳米粒度分析仪、透射电子显微镜、原子力显微镜、傅里叶变换红外光谱仪、X射线衍射仪和热重分析仪对分层制备的小麦秸秆CNC进行表征分析。结果表明,经硫酸水解预处理、离心收集得到的上层清液纳米纤维素(CNC-SL)为纳米纤维素晶须,与原料相比,其结晶度由48.61%提高至71.87%;硫酸水解预处理、离心收集的残余纤维固体(CNC-S)经8次均质处理制备的纳米纤维素(CNC-SP),其粒径分布在100~200 nm,直径约为15 nm,为高结晶度的短棒状纳米纤维素晶须,晶型为Iβ型。与原料相比,CNC-SL和CNC-SP的热稳定性均下降。与硫酸水解法制备CNC相比,硫酸水解辅助高压均质法制备的CNC得率较高;与机械均质化方法相比,此方法所需均质次数明显减少。  相似文献   

9.
纳米纤维素晶体(NCC)可由可再生资源制备,并且具有诸多特性,近年来成为研究热点。本文应用PFI磨对竹子溶解浆预处理,用纤维素酶水解制备纳米纤维素晶体,研究了酶解时间、酶解温度、酶用量对纳米纤维素晶体产率的影响,采用正交实验优化了工艺参数。并用扫描电镜、激光粒度仪、傅里叶红外、热重对原料及NCC进行性能表征。结果表明:在酶用量8m L、酶解时间3d、酶解温度50℃的条件下,纳米纤维素晶体的产率最高,达到19.13%。PFI磨预处理及酶解均可细化纤维素,NCC的Z均粒径为375.5nm,所制备的NCC保持了原料的基本化学结构,NCC的热稳定性低于原料,但其热分解残余率增大。  相似文献   

10.
用亚氯酸钠和17.5%氢氧化钠对龙须草进行预处理,再以硫酸水解法制备龙须草纳米微晶,采用正交试验优化酸水解条件,并利用场发射扫描电镜、动态光散射、红外光谱、X射线衍射和热重分析对纳米微晶进行表征。研究表明,酸水解条件为硫酸浓度59%,温度45℃,时间2 h,纳米微晶长度、粒径和长径比分别为171.1 nm,17.2 nm和10.3;纳米微晶的纤维素存在纤维素Ⅰ和纤维素Ⅱ两种晶型,其结晶指数为78%;纳米微晶的热裂解起始温度和最大热重损失温度分别为178℃和224.4℃,700℃热降解的残余率为30.6%。  相似文献   

11.
采用球磨辅助固体酸水解法制备了纤维素纳米微晶,对球磨条件及酸水解条件进行了系统研究,同时对所得纤维素纳米微晶进行了性能表征。结果表明,采用机械力化学-球磨预处理可活化纤维素原料;采用草酸对球磨预活化后的纤维素原料水解提取纤维素纳米微晶,发现球磨处理2. 5 h后,采用70%的草酸在90℃下水解5 h,得到的纤维素纳米微晶尺寸在200~300 nm,产率在61%左右;此外,草酸可通过简单方法进行回收,回收的草酸可继续用于水解制备纤维素纳米微晶。  相似文献   

12.
硫酸盐蔗渣浆经过臭氧精炼氧化和PFI磨浆得到的微晶纤维素,和市场上购买的微晶纤维素,经过不同浓度的硫酸预处理,再经过动态高压微射流均质机的纤维细化处理,通过单因素对比实验,得出实验的最佳条件为:预处理硫酸浓度为60%,高压均质处理纤维浓度是1/800,均质次数为16次,均值压力为124MPa,以上实验条件下,实验室自制所得微晶纤维素、山东微晶纤维素和江苏微晶纤维素制备的纳米纤维素的平均粒径大小分别是12.3nm,43.6nm和86.3nm。  相似文献   

13.
采用纤维素酶法制备香蕉皮纳米纤维素。研究酶解时间、纤维素酶浓度、酶解温度3个因素对香蕉皮纳米纤维素产率的影响,通过响应曲面分析方法优化其酶解工艺,得到纤维素酶法制备香蕉皮纳米纤维素的最佳合适的工艺条件。结果表明:最佳条件为温度60℃,酶浓度200μ/mL,酶解时间180min,产率为53.08%。  相似文献   

14.
采用盐酸水解法制备柚皮微晶纤维素,通过单因素试验,分别考察HCl浓度、酸解时间、酸解温度对柚皮微晶纤维素制备工艺的影响。在此基础上,通过正交试验优化制备工艺条件,并确定了柚皮微晶纤维素制备工艺的最佳条件:HCl体积分数为8%、酸解温度为60℃、酸解时间为80 min。利用红外光谱、X衍射、扫描电镜对柚皮微晶纤维素晶型结构、微观形态进行表征。柚皮微晶纤维素为纤维素I型结构,相对结晶度为71.26%,表面形态粗糙,呈长杆状。  相似文献   

15.
沙棘渣制备微晶纤维素的酶解条件优化   总被引:1,自引:0,他引:1  
沙棘浆加工过程中产生酚酸含量高的果渣,因其苦涩无法被饲料工业大量转化,利用其进行微晶纤维素制备是潜在可行的解决途径。以粗提沙棘渣纤维素为处理对象,使用S10041纤维素酶水解,选取液料比、酶添加量、酶解时间、酶解温度、缓冲液p H值、离心转速、烘干温度及纤维素粉碎度8个因素,通过单因素试验和PlackettBurman因素筛选,并经过最陡爬坡试验和Box-Behnken试验优化了酶解条件,随后对制得的微晶纤维进行结构分析。结果表明:在液料比49∶1(m L/g)、酶添加量68 U/m L、酶解时间1.3 h、离心转速3 640 r/min时制得的沙棘微晶纤维素聚合度为355±1.02,与棉微晶纤维素聚合度最为接近。方差分析表明4个选定因素对指标均产生独立影响,因素交互作用对指标影响不显著(P=0.10)。微观结构显示沙棘微晶纤维表面结构更疏松,红外图谱对比沙棘和棉花两种微晶纤维官能团结构相似。  相似文献   

16.
以沙柳为原料,研究了超微粉碎预处理技术对沙柳原料酶水解效果的影响,基于Box-Behnken实验设计,对经过超微粉碎预处理的沙柳原料,采用响应面分析法优化了超微粉碎沙柳原料稀碱预处理的工艺条件,考察了原料粒径,稀碱处理过程中碱浓度、处理时间、处理温度对原料水解的影响,并建立了工艺数学模型.通过实验得到最佳超微粉碎沙柳原料酶解的预处理条件:原料粒度(15μm)、0.79%NaOH、94.6℃、43.4min,原料的酶解率可以达到最大值.结果表明,超微粉碎预处理的沙柳原料经过稀碱预处理后可明显提高纤维素的酶水解效率,该模型为超微粉碎沙柳原料酶解工艺的进一步研究提供了依据.  相似文献   

17.
以杨木化学机械浆为原料,采用对甲基苯磺酸水解-高压均质法制备木质纤维素纳米纤丝(LCNF);研究对甲基苯磺酸水解过程中木质素脱除规律及残余木质素对LCNF微观形态、尺寸、结晶结构和热稳定性的影响。结果表明,对甲基苯磺酸水解能有效去除木质素,削弱纤维间结合力,有利于高压均质过程中的微纤丝解离分散。与纤维原料相比,LCNF的无定形区遭到破坏,结晶度由43.9%增至66.0%。通过酸水解可以调控残余木质素含量,进而控制高压均质后LCNF的平均宽度,实现多尺度LCNF的制备。LCNF的木质素含量越低,LCNF分散性越好、尺寸越均一。当残余木质素含量为4.89%时,LCNF平均宽度最小(10.6 nm),最大热失重降解温度(Tmax)在350~360℃。  相似文献   

18.
以茶渣为原料,采用盐酸水解法制备茶渣微晶纤维素。通过单因素试验研究了酸解时间、酸解温度、盐酸浓度及料液比对微晶纤维素得率、聚合度和结晶度的影响,采用正交试验优化了工艺参数,并运用X-射线衍射和红外光谱对微晶纤维素产品进行表征。试验结果表明:最佳制备工艺条件为酸解温度95℃、盐酸质量分数8%、酸解时间90 min、料液比1∶16(g/mL)。各因素对得率影响的显著性为:酸解温度盐酸浓度酸解时间料液比;在此条件下,茶渣微晶纤维素产品的得率为54.34%,聚合度为128;X-射线衍射和红外光谱分析表明,茶渣微晶纤维素与原纤维素材料结构一致,结晶度达67.77%,晶粒尺寸为3.98 nm,晶型为纤维素Ⅰ型。  相似文献   

19.
超微粉碎锥栗淀粉的理化性质变化   总被引:2,自引:1,他引:1       下载免费PDF全文
研究了超微粉碎对锥栗淀粉理化性质的影响。实验结果表明,随着超微粉碎时间的延长,锥栗淀粉颗粒的粒径、结晶度、膨胀度、糊化温度范围、糊化焓减小,溶解度与酶解率增加;当超微粉碎达到60 min后,淀粉颗粒粉碎达到极限,其结晶结构全部被破坏成为无定形结构,从35℃左右开始糊化,至62℃左右时已完全糊化,溶解度将近60%,α-淀粉酶的酶解率超过70%。当超微粉碎达到75 min时,更多的细微粒子发生团聚,粒径为0~5μm的细微颗粒明显减少,而粒径大于25μm的大颗粒增加。超微粉碎既破坏了淀粉颗粒的表观结构,也破坏了其结晶结构,使之变成了无定型态,大大改善了其糖化、酒精发酵特性;锥栗淀粉经60 min超微粉碎处理后,其免蒸煮的液化-糖化发酵工艺发酵96 h的酒精产量达到13.64%,而直接糖化发酵工艺发酵108 h后酒精产量也可达12.32%。  相似文献   

20.
多种酶法处理提高马铃薯回生抗性淀粉制备率   总被引:4,自引:1,他引:4  
以马铃薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究α–淀粉酶、糖化酶和纤维素酶种类、酶加量、酶解时间、酶解温度、酶解pH、多种酶最佳配比及酶解顺序对RS3型抗性淀粉制备产率影响。固定条件:淀粉乳10%,高压温度120℃,高压时间30min,老化温度4℃,老化时间12h,糖化酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:糖化酶加量为1,200U/mL,酶解时间为60min,pH为5.0,酶解温度为55℃,制备产率达8.862%;纤维素酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:纤维素酶加量为40U/mL,酶解时间为45min,pH为5.0,酶解温度为35℃,制备产率达17.748%。α–淀粉酶、糖化酶和纤维素酶两两联合处理、三种酶共同处理均使马铃薯回生抗性淀粉制备产率降低;而纤维素酶处理可大大提高马铃薯回生抗性淀粉制备产率。RS3制备过程系为通过破坏纤维素等阻隔淀粉分子聚集的非淀粉物质提高制备产率,比将淀粉分子分解从颗粒结构中释放出以提高RS3制备产率更为有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号