首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纤维素酶提取水溶性膳食纤维工艺的研究   总被引:1,自引:0,他引:1  
目的 以番茄不溶性膳食纤维为原料,用酶解法提取可溶性膳食纤维(SDF).方法 经正交试验优化提取工艺,并在优化条件下循环提取.结果 制备SDF的最佳工艺条件为:酶用量10%,酶解时间6 h,酶解温度60℃,pH 4.0,以最佳条件连续反应,产率可达31.1%.结论 确定了酶提取SDF的最佳工艺;证实循环工艺可以提高提取效率.  相似文献   

2.
目的 以番茄不溶性膳食纤维为原料,用酶解法提取可溶性膳食纤维(SDF).方法 经正交试验优化提取工艺,并在优化条件下循环提取.结果 制备SDF的最佳工艺条件为:酶用量10%,酶解时间6 h,酶解温度60℃,pH 4.0,以最佳条件连续反应,产率可达31.1%.结论 确定了酶提取SDF的最佳工艺;证实循环工艺可以提高提取效率.  相似文献   

3.
对大豆膳食纤维的提取及其各组分的连续分离工艺进行研究。获得酶-化学法提取膳食纤维的最佳工艺条件为:木瓜蛋白酶用量0.012∶1(g/g)、碱提液pH12.03、碱提温度68℃,所得膳食纤维样品中总膳食纤维含量为95.57%,其中可溶性膳食纤维17.44%,不溶性膳食纤维78.13%。碱提酸沉法分离半纤维素的最佳工艺条件为:液固比21∶1、提取温度35.5℃、提取时间5.3h。该工艺条件下半纤维素的得率为30.15%,纯度为92.34%。酸性次氯酸钠法分离纤维素的最佳反应条件为:次氯酸钠浓度为16%、pH4.0~4.5、提取温度65℃。纤维素样品的得率为37.24%,产品中纤维素含量91.14%。  相似文献   

4.
花生壳膳食纤维提取工艺的研究   总被引:1,自引:0,他引:1  
以花生壳为研究对象,通过一系列单因素实验、正交试验和方差分析的方法,着重对花生壳挤压预处理工艺条件、可溶性膳食纤维提取工艺条件和不溶性膳食纤维的提取工艺条件进行了研究,研究结果表明:花生壳挤压预处理的工艺条件为:物料含水量为20%、挤压温度为170℃、螺杆转速为180r/min;花生壳中可溶性膳食纤维提取的最佳工艺条件为:p H为3、提取温度为85℃,提取时间为2h;花生壳中不溶性膳食纤维提取的最佳工艺条件为:α-淀粉酶加酶量为0.5%、反应p H为6.5、反应温度为65℃、反应时间为50min。在上述工艺条件下制备的花生壳膳食纤维产品中,可溶性膳食纤维含量达到18.1%,不溶性膳食纤维含量达到80.7%。  相似文献   

5.
酶法提取生姜中可溶性膳食纤维及抗氧化活性的研究   总被引:2,自引:0,他引:2  
探讨酶法辅助提取生姜中可溶性膳食纤维的工艺条件及其抗氧化活性。在固定糖化酶加酶量1%,酶解温度60℃,酶解时间1h条件下,通过单因素实验探讨了植物蛋白酶加酶量、酶解时间、酶解温度等因素对生姜中可溶性膳食纤维提取率的影响,结果为植物蛋白酶加酶量6%,酶解温度55℃,酶解时间4h。在单因素实验的基础上,通过正交实验优化最佳提取条件,结果表明:植物蛋白酶最佳工艺条件为加酶量6%,酶解温度60℃,酶解时间5h,生姜中可溶性膳食纤维提取率高达12.82%。生姜中可溶性膳食纤维对.OH自由基表现出较强的清除能力,在0.6mg/mL~3mg/mL浓度范围内清除率与浓度呈较好的量效关系,IC50为1.95mg/mL。  相似文献   

6.
刘湾  马海乐  黄六容 《食品工业科技》2014,(12):172-175,179
目的:提高蒜皮膳食纤维的可溶性、评价其抗氧化活性。方法:以蒜皮为原料,采用酶-重量法进行蒜皮膳食纤维(TDF)提取,以及不溶性膳食纤维(IDF)和可溶性膳食纤维(SDF)的分离,对于分离得到的IDF,通过单因素和正交实验,探索纤维素酶酶法改性的最佳工艺条件;对于蒜皮不溶性膳食纤维,通过纤维素酶法改性提高其可溶性。结果:蒜皮中TDF含量为69.18%,其中SDF含量为7.28%、IDF为61.9%;酶法改性的最优条件为:料液比1∶15g/mL、纤维素酶加酶量5%、酶解温度45℃、酶解时间4h、酶解pH6.5,此条件下蒜皮IDF的33.20%转化成为SDF;酶解后溶出的SDF溶液对羟自由基和DPPH自由基清除效果较好。结论:纤维素酶酶解可以显著改善蒜皮膳食纤维的溶解特性,改性后的蒜皮SDF具有较好抗氧化活性。  相似文献   

7.
酶法提取花生粕不溶性膳食纤维的研究   总被引:3,自引:0,他引:3  
以花生粕为原料,采取酶法提取花生粕中的不溶性膳食纤维,探讨α-淀粉酶、木瓜蛋白酶最佳酶解条件。结果表明:α-淀粉酶的最佳酶解条件为温度60℃,时间30 min,pH4.0,酶量2%;木瓜蛋白酶的最佳酶解条件为温度80℃,时间2 h,pH7.0,酶量11%,花生粕不溶性膳食纤维的提取率达到37.72%。  相似文献   

8.
王顺民  郑锐 《食品科学》2013,34(8):100-103
目的:以菜籽皮为原料,研究不溶性膳食纤维的酶法提取工艺条件。方法:采用淀粉酶和蛋白酶酶解菜籽皮,以不溶性膳食纤维得率为指标,通过正交试验优化最佳工艺条件。结果:淀粉酶加酶量0.7%,料液比1:20、pH5.5、温度40℃、酶解时间60min,在此条件下菜籽不溶性膳食纤维得率为81.24%;蛋白酶的添加量0.7%、料液比1:20、pH7.5、酶解温度40℃、酶解时间60min,在此条件下菜籽不溶性膳食纤维得率为77.13%。结论:确定了影响膳食纤维提取的主要影响因素,得到了菜籽皮不溶性膳食纤维酶解法提取的最佳条件。  相似文献   

9.
以新鲜米糠为原料,在单因素和正交试验基础上,通过分析不同挤压工艺和酶解条件对米糠中可溶性膳食纤维提取率的影响,优化挤压膨化辅助酶水解技术提取可溶性膳食纤维。同时采用扫描电子显微镜、差示扫描热量法等表征可溶性膳食纤维的结构及物化特性。试验结果表明,在挤压温度130℃、螺杆速度200 r/min、物料含水量20%,酶用量2.0%、酶解温度75℃、酶解时间90 min、p H 6.0的条件下,可溶性膳食纤维提取率为30.35%。米糠可溶性膳食纤维表面形态疏松,呈蜂窝颗粒状,内部由纤维素类物质形成支撑主体,热力学相对稳定。与未经挤压膨化处理提取的可溶性膳食纤维相比,挤压辅助提取的可溶性膳食纤维具有更高的持水力、结合水力、溶胀力、结合脂肪能力及丰富的空间网状结构,结构及物化特性均得到明显改善。  相似文献   

10.
以芟白壳为原料,采用化学法制备可溶性膳食纤维和不溶性膳食纤维.正交实验结果表明,可溶性膳食纤维提取的最佳工艺条件为:pH2.0、温度80℃、时间90min.不溶性膳食纤维提取的最佳工艺条件为:碱解时NaOH浓度1.0mol/L、料液比1:20(g/mL)、温度60℃、时间60min;酸解时pH3.0、温度60℃、时间120min,其溶胀性为4.34mL/g,持水力为8.11g/g.  相似文献   

11.
正交法优化小石花菜膳食纤维提取工艺   总被引:2,自引:0,他引:2  
以小石花菜为原料,采用酶与化学结合的方法提取膳食纤维.就影响膳食纤维含量7个因素:酶用量、酶解时间、酶解温度、氢氧化钠浓度、氢氧化钠提取温度、氢氧化钠用量、氢氧化钠提取时间进行单因素试验和正交试验.研究确立提取小石花菜膳食纤维的最佳工艺条件为蛋白酶与纤维素酶用量比为20:1、在50℃条件下酶解1.5 h,再用40倍1.0%氢氧化钠溶液在65℃提取1 h,其产率可达18.16%,色泽近淡黄色.  相似文献   

12.
为了获得高得率的豆渣可溶性膳食纤维,以碱处理豆渣制备可溶性膳食纤维后剩余的不溶性残渣为原料,采用纤维素酶对其进行酶解改性。通过单因素试验和响应面优化试验,研究了不同酶解条件对豆渣可溶性膳食纤维得率的影响。结果表明:对豆渣可溶性膳食纤维得率的影响因素依次为加酶量>酶解时间>酶解温度>酶解pH,最佳酶解工艺条件为:加酶量1.80%,酶解时间3.5 h,酶解温度48℃,酶解pH4.8。在此条件下,豆渣可溶性膳食纤维得率可达到7.64%,且其品质符合国家粮食行业标准规定的指标。扫描电镜结果表明,酶法制备的豆渣可溶性膳食纤维的颗粒较小,呈现蜂窝状,有利于其水合特性的提高。  相似文献   

13.
秦杰  苗敬芝  董玉玮 《食品科技》2011,(10):157-160
以花生粕为原料,采用双酶法探讨花生粕中总膳食纤维提取工艺条件。通过单因素实验,考察木瓜蛋白酶的加酶量、酶解时间、温度和糖化酶的加酶量、酶解时间、温度对总膳食纤维提取率的影响。结果表明,木瓜蛋白酶的最佳提取工艺条件:加酶量8%,时间4h、温度50℃;糖化酶的最佳提取工艺条件:加酶量1.2%,时间1h、温度60℃,在该条件下花生粕中膳食纤维提取率为40.45%。  相似文献   

14.
花椒籽可溶性膳食纤维的提取工艺研究   总被引:1,自引:0,他引:1  
以脱脂花椒籽为原料,采用单因素实验和响应面法优化酶法提取花椒籽可溶性膳食纤维的工艺研究,并对制得的可溶性膳食纤维的理化性质进行了测定。结果表明,酶法提取花椒籽可溶性膳食纤维的最佳工艺条件为:纤维素酶添加量2.0%,料液比1∶23,酶解温度42℃,酶解时间13 h,酶解pH 4.33,胰蛋白酶添加量0.4%。在最佳工艺条件下,花椒籽可溶性膳食纤维的平均得率为9.19%,持水力为2.33 g/g,膨胀率为2.05 mL/g。  相似文献   

15.
目的优化石榴皮中不溶性膳食纤维酶法提取的最优条件。方法以果胶酶和木瓜蛋白酶水解石榴皮为原料,以石榴皮不溶性膳食纤维得率为指标,对液料比、酶添加量、酶解温度以及酶解时间4个单因素对石榴皮不溶性膳食纤维得率影响的基础上进行L_9(3~4)的正交优化试验。结果在液料比为20:1(m/V)的条件下,果胶酶添加量0.9%,酶解温度55℃,酶解时间65min;木瓜蛋白酶添加量0.6%,酶解温度50℃,酶解时间45min,在此条件下,石榴皮不溶性膳食纤维的得率可达31.87%±0.27%。结论酶法提取石榴皮不溶性膳食纤维得率高,条件温和、安全性高、利于环保。  相似文献   

16.
采用四级薇菜干磨成粉为原料,研究酶法提取薇菜中不溶性膳食纤维的工艺优化,为合理利用薇菜资源提供参考依据。采用α-淀粉酶酶解薇菜干粉末,以薇菜不溶性膳食纤维提取率为评价指标,进行单因素试验及正交试验,得出薇菜不溶性膳食纤维的最佳工艺条件。结果表明,酶法提取薇菜不溶性膳食纤维的最佳提取条件为料液比1︰20 g/m L、柠檬酸缓冲溶液p H 5.8、α-淀粉酶浓度1.0%、酶解温度30℃、酶解时间4.5 h,在最优条件下薇菜不溶性膳食纤维提取率为74.28%。其持水力在8,12和24 h时分别为3.47,3.87和4.32 g/g;结合水力在2,4和6 h时分别为0.70,0.80和0.84 g。通过单因素正交试验,确定了影响酶法提取薇菜不溶性膳食纤维的主要因素,得出了提取薇菜不溶性膳食纤维的最佳工艺条件,最佳工艺条件下制备的薇菜不溶性膳食纤维的持水力和结合水力性能较好,并且可以为科研上的研究提供基础条件,以及为以后的工业生产提供理论基础。  相似文献   

17.
复合酶法提取玉米皮渣中可溶性膳食纤维的研究   总被引:5,自引:0,他引:5  
林旭辉  毛潞河  李楠  姜子涛 《食品科技》2006,31(11):242-244
采用复合酶法对玉米皮渣中可溶性膳食纤维的提取工艺条件做了进一步的探讨,从而得到较纯净的可溶性膳食纤维。结果表明:提取可溶性膳食纤维的最佳工艺条件为混合酶制剂量为3%,酶解时间为12h,温度为50℃,pH值不调。  相似文献   

18.
为提高膳食纤维中可溶性膳食纤维的含量,以米糠膳食纤维为研究对象,采用高温-酶解法对米糠总膳食纤维进行改性,并重点对高温-酶解的条件进行优化,最后测定改性后米糠膳食纤维的理化性质和降血糖作用。结果表明,通过高温-酶解法制备得到的米糠总膳食纤维含量达85.33 g/100 g;高温-酶解的最佳条件为:复合酶中木聚糖酶和纤维素酶的质量比为1.5∶1,复合酶的添加质量为米糠质量的2%,酶解时间为1.5 h,酶解温度为50℃;通过高温-酶解改性后米糠膳食纤维的持水性和溶解性提高,表明可溶性膳食纤维含量增加,且葡萄糖吸收能力增强,具有一定的降血糖的功能。综上得出,通过高温-酶解改性的米糠膳食纤维具有丰富的营养成分,且具有一定的降血糖功能。  相似文献   

19.
谢婧 《食品科技》2015,(4):296-301,308
采用复合植物水解酶结合酸法提取梅州金柚皮中可溶性膳食纤维,以单因素试验为基础,以可溶性膳食纤维提取率为指标,选择酸法适合提取条件,再根据Box-Behnken实验设计原理,通过响应面分析得到酶法提取优化组合条件。得到最佳工艺为:稀硫酸p H3、物料比固定为1:20、酸解温度为50℃,酸解时间2 h,酶解温度为44℃,酶添加量为0.25 mg/g,酶解时间为2 h,此时可溶性膳食纤维提取得率为20.2438 mg/g。膳食纤维的持水力为9.397 g/g,溶胀性为11.25 m L/g,梅州金柚皮可以作为一种优良的膳食纤维来源。  相似文献   

20.
为了提高姜渣的利用率,增加企业的经济效益,试验以姜渣为原料,采用超声波辅助法提取姜渣中的不溶性膳食纤维。主要通过对α-淀粉酶用量、超声时间、NaOH浓度、碱解温度和碱解时间这5个因素进行单因素试验,并通过正交试验进行优化,确定最佳的提取工艺。结果表明,姜渣中不溶性膳食纤维的最佳提取条件为:α-淀粉酶用量0.3%,超声时间40 min,NaOH浓度6%,碱解温度35℃,碱解时间55 min;在这种条件下,不溶性膳食纤维的得率达到54.14%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号