首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用超声法制备牡丹籽油-羟丙基-β-环糊精(牡丹籽油-HP-β-CD)包合物,以包合率和包合物得率的综合评分OD值为评价指标,在单因素试验基础上采用Box-Behnken响应面法优化包合工艺条件。确定牡丹籽油-HP-β-CD包合物的最佳制备工艺条件为:超声功率360 W,包合温度46.5℃,牡丹籽油与HP-β-CD质量比1∶6.6。在最佳工艺条件下,包合物得率为85.53%,包合率为92.00%,综合评分OD值为89.41%。经红外光谱法鉴别,已形成牡丹籽油-HP-β-CD包合物。  相似文献   

2.
目的筛选β-环糊精(β-CD)包合罗勒挥发油的最佳工艺。方法采用响应面分析试验,以挥发油包合率、包合物产率为主要筛选指标,选出制备罗勒油-β-CD包合物的最佳包合条件;采用显微镜法、薄层色谱法和紫外分光光度法验证了包合物的形成。结果最佳包合工艺为罗勒油-β-CD为1︰8.5(w/w),包合时间72 min,包合温度41.0℃。结论采用响应面法优化得出的包合工艺合理,包合率高。  相似文献   

3.
目的 筛选β-环糊精(β-CD)包合罗勒挥发油的最佳工艺.方法 采用响应面分析试验,以挥发油包合率、包合物产率为主要筛选指标,选出制备罗勒油-β-CD包合物的最佳包合条件;采用显微镜法、薄层色谱法和紫外分光光度法验证了包合物的形成.结果 最佳包合工艺为罗勒油-β-CD为1:8.5(w/w),包合时间72 min,包合温度41.0℃.结论 采用响应面法优化得出的包合工艺合理,包合率高.  相似文献   

4.
以玫瑰香精和羟丙基-β-环糊精(HP-β-CD)为原料,采用水浴恒温磁力搅拌法制备玫瑰香精-HP-β-CD包合物;通过L9(34)正交试验对制备工艺进行了优化,并以挥发油包合率和包合产率为指标评价了包合工艺,利用红外(FT-IR)和薄层层析色谱(TLC)对包合物进行了表征。结果表明:HP-β-CD与玫瑰香精形成了包合物,且在包合过程中未改变玫瑰香精的化学成分,提高了玫瑰香精的缓释效果。最佳制备工艺:玫瑰香精1mL,m(HP-β-CD/g)︰V(玫瑰香精/mL)=6︰1,搅拌速度700 r/min,包合温度为50℃,包合时间为5 h。影响因素的大小依次为:包合温度>搅拌速度>玫瑰挥香精和H-β-CDP的投料比>包合时间。  相似文献   

5.
为了优化月见草油-β-环糊精包合物的制备工艺。采用饱和水溶液法制备月见草油β-环糊精包合物,以β-环糊精与月见草油的投料比、包合温度和包合时间为考察因素,月见草油包合物包合率和包合物得率的综合评分为指标,通过星点设计-响应面法优化制备工艺,经红外分析和差示扫描量热进行包合物形成的验证。最佳包合工艺为β-环糊精与月见草油投料比为5∶1 m L/g、包合温度55℃、包合时间1.8 h,在此最佳工艺条件下,月见草油-β-环糊精包合物的包合率和包合物得率分别为81.56%和92.28%。实验证明月见草油可与β-环糊精形成稳定的包合物,为月见草油的应用开发提供了理论基础。  相似文献   

6.
研究星点设计-效应面法优化柚皮素-β-环糊精(NAR-β-CD)包合物的制备工艺。采用搅拌法制备NAR-β-CD包合物,以β-CD与NAR的投料质量比、包合时间、包合温度为自变量,以包封率、包合物得率为因变量,采用星点设计-效应面优化法,对结果进行多元线性回归和二项式拟合,经效应面法预测最佳工艺条件,并作验证试验。并比较NAR-β-CD包合物和NAR的累积溶出率。NAR-β-CD包合物的最佳工艺:β-CD与NAR投料质量比为5∶1,包合时间为1.412 h,包合温度为48.11℃。包合率和包合物得率预测值与理论值的偏差分别为1.43%、1.99%。NAR和NAR-β-CD包合物的累积溶出率分别为37.15%,为83.24%。  相似文献   

7.
以葡萄糖基-β-环糊精(glucose-β-cyclodextrin,G-β-CD)为主体,利用冷冻干燥法制备了杨梅素/G-β-CD包合物,通过相溶解度法分析杨梅素/G-β-CD包合物的包合作用。此外,通过红外光谱、X射线粉末衍射、扫描电子显微镜、差示扫描量热与热重等分析方法对此包合物的形貌、热稳定性等进行表征;通过测定杨梅素与杨梅素/G-β-CD包合物的还原能力和对1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-trinitrophenylhydrazine,DPPH)自由基清除能力表征其抗氧化能力。当杨梅素浓度为6 mmol/L时,杨梅素/G-β-CD包合物的还原能力相较客体杨梅素分子提高了89.13%;当杨梅素浓度为10 mmol/L时,DPPH自由基清除能力增加了109.12%。结果表明:冷冻干燥法成功制备出了包合比为1∶1的杨梅素/G-β-CD包合物,且包合物具备良好的抗氧化能力和水溶性,可以作为新型食品添加剂。  相似文献   

8.
张多婷  韩静  项文娟  张玥 《食品科学》2011,32(17):199-203
以β-环糊精(β-CD)为主体,超声法制备叶黄素-β-环糊精(叶黄素-β-CD)包合物,通过X射线粉末衍射光谱、红外光谱及差示扫描量热分析对叶黄素-β-CD包合物进行表征。结果表明:叶黄素-β-CD包合物的适宜包合条件为叶黄素与β-CD的物质的量比1:4,超声功率400W,超声时间40min,包合率可达到75.8%以上;产物的光谱特征的变化证实叶黄素和β-CD形成了新的物相;而用相溶解度确定叶黄素和β-CD的相溶解度曲线属于AL型,叶黄素与β-CD形成1:1包合物,包结常数为346.97L/mol。经包合后,叶黄素的稳定性与水溶性得到明显提高。  相似文献   

9.
目的筛选槲皮素-β-环糊精包合物及槲皮素-羟丙基-β-环糊精包合物的最佳制备方法及工艺条件,并进行包合物的鉴定及溶解度测定。方法采用溶液搅拌法、超声波法和研磨法比较包合物的制备效果;溶液搅拌法的包合物制备工艺以包合得率为指标,分别考察投料摩尔比、包合温度、包合时间及溶液p H值对包合物得率的影响,并通过正交试验优化;采用薄层鉴别法及红外光谱法对包合物进行鉴定。结果通过比较包合物得率,采用溶液搅拌法制备槲皮素-β-CD和槲皮素-HP-β-CD包合物更好;包合物制备的最佳工艺条件为:投料摩尔比为1:1、制备温度为60℃、制备时间为2 h、溶液p H值为7;在此条件下制备槲皮素-β-CD包合物的平均包合得率为66.22%,制备槲皮素-HP-β-CD包合物平均得率可达71.49%;槲皮素-β-CD包合物溶解度为26.94μg/mL,槲皮素-HP-β-CD包合物在水中的溶解度可增加到2224.21μg/mL。槲皮素在0.8~6.4μg/mL浓度范围内呈良好的线性关系(r=0.9999)。结论溶液搅拌法使槲皮素与环糊精衍生物形成包合物,且明显增加了槲皮素在水中的溶解性,有利于药物在体内的吸收并提高了生物利用率。  相似文献   

10.
印奇果油-羟丙基-β-环糊精包合物制备工艺研究   总被引:1,自引:0,他引:1  
目的制备印奇果油-羟丙基-β-环糊精包合物。方法采用饱和溶液法制备印奇果油-羟丙基-β-环糊精包合物;采用L9(34)正交设计,优化印奇果油-羟丙基-β-环糊精包合物制备工艺;采用喷雾干燥法将其制备成粉末;采用单因素分析法优化印奇果油-羟丙基-β-环糊精包合物的最佳喷雾干燥工艺。结果以包合率为指标,印奇果油-羟丙基-β-环糊精包合物的最佳制备工艺为A2B1C2,即当包合温度为60℃,搅拌时间为30 min,药液滴加速度为1 m L/min时,包合率最高。按最佳工艺参数进行3次平行试验,平均包合率为36.94%,相对标准偏差(RSD)为1.06%。结论以最佳工艺制备包合物,工艺稳定可行。  相似文献   

11.
研究β-环糊精(β-CD)对茴脑的包合作用.以包合物油利用率为指标,应用三因素六水平的均匀设计方法,筛选出茴脑包合物的最佳制备条件,即温度、研磨时间、样品与β-CD的比例.实验得出最佳包合条件:当温度为41.O℃,研磨时间1.5 h,与β-CD的比例为1:11.2时,所得包合物油利用率为最大值87.0%;红外测定包合物包合是否完全.优选后得到的结果稳定可行.  相似文献   

12.
采用冷冻-干燥法制备辣椒素/甲基-β-环糊精(Me-β-CD)包合物,采用正交试验设计,以包合率为指标,确定最优包合条件。通过相溶解法探究主客体之间包合的物质的量比及辣椒素水溶性的改变,并利用粉末X射线衍射(XRD)、红外谱图(IR)及核磁(1H NMR)鉴定包合物结构。此外,通过对比辣椒素及辣椒素/Me-β-CD还原Fe3+的能力,研究包合作用对提升辣椒素抗氧化能力的作用。实验表明:最佳包合条件为辣椒素与Me-β-CD物质的量比2:1,反应温度为30℃,反应时间为12 h。辣椒素与Me-β-CD形成了包合比1:1的包合物。辣椒素/Me-β-CD包合物的水溶性得到了显著地提高,其溶解度(环糊精浓度为8 mmol/L时)提高了6倍。还原能力实验为包合作用对辣椒素抗氧化能力的提升提供了依据。  相似文献   

13.
采用紫外分光光度法研究柠檬醛与β-CD衍生物的包合作用。通过正交试验优化山苍子精油-β-CD包合物的制备工艺。柠檬醛与β-CD衍生物的包合比为1∶1,包合物的形成常数随温度的升高而减少。热力学参数(ΔH°,ΔG°,ΔS°)表明包合过程为自发放热过程,主要驱动力为焓变(ΔH°)。通过综合评分法优选的山苍子精油-β-CD包合物制备工艺是:油料比1∶6,包合温度30℃,包合时间1.5 h。IR,XRD和SEM确证了包合物的形成。  相似文献   

14.
以环糊精(cyclodextrin, CD)为主体,三丁酸甘油酯(tributyrin, TB)为客体,采用共沉淀法制备CD/TB包合物,通过核磁共振、相溶解度、等温滴定微量热及分子模拟对其包合机制进行研究。结果表明,单一环糊精(α-CD、β-CD、γ-CD)均可与三丁酸甘油酯形成包合比为1∶1的包合物,其中β-CD最适于包合三丁酸甘油酯;环糊精包合三丁酸甘油酯是自发进行的微放热过程,焓熵协同驱动促进环糊精包合三丁酸甘油酯,其中熵驱动在包合过程中占主导地位,疏水作用力为主要作用;复配环糊精(α-CD∶β-CD∶γ-CD=2∶7∶1,物质的量之比)包合三丁酸甘油酯过程中的熵变(24.3 cal/mol K)比单一环糊精(β-CD为17.8 cal/mol K)提高了36.52%,同时包合稳定常数提高了79.21%,说明复配环糊精可提供更多与三丁酸甘油酯分子尺寸相匹配的疏水空腔,包合能力更强,从而达到更稳定的包合效果;最终,通过解析单一环糊精包合三丁酸甘油酯的分子对接模型,推测出复配环糊精协同包合三丁酸甘油酯的包合构象。该研究为环糊精包合体系的机制研究提供了参考依据。  相似文献   

15.
本文研究了抗坏血酸葡萄糖苷(2-O-α-D-glucopyranosyl-L-ascorbicacid,简称AA-2G)/β-环糊精包合物的制备工艺,以提高它在应用中的稳定性、生物利用度。选用β-环糊精(β-cyclodextrin,β-CD)对AA-2G进行包合,采用饱和水溶液法研究了AA-2G-β-CD包合物的制备工艺。以包合率为考察指标,通过单因素试验考察了温度、时间、搅拌速度以及β-环糊精和AA-2G的摩尔比对包合物制备效果的影响。进一步运用正交试验研究确定了AA-2G-β-CD包合物的最佳工艺条件为:AA-2G与β-CD的摩尔比为1:3,温度为60℃、搅拌速度为200 r/min,时间为5 h时,包合率为49.55%。影响包合率的因素顺序为:时间温度转速摩尔比。验证试验表明,饱和水溶液法制备AA-2G-β-CD包合物工艺稳定。通过傅里叶红外色谱法对制备的AA-2G-β-CD包合物进行了鉴定,证明了AA-2G-β-CD包合物的形成。通过抗氧化性实验发现,包合物清除氧自由基能力高于AA-2G与β-CD混合物。综上,采用饱和水溶液法制备AA-2G-β-CD包合物,经验证AA-2G-β-CD包合物形成,通过正交实验优化制备工艺后,其包合率达到49.55%,同时包合物的抗氧化性能力高于AA-2G与β-CD混合物。  相似文献   

16.
目的:考察高速剪切结合冷冻干燥法制备薄荷挥发油的β-环糊精(β-cyclodextrin,β-CD)包合物的最佳工艺。方法:对比冷冻干燥与真空干燥,高速剪切与搅拌法对包合工艺的影响;在单因素实验基础上,以β-CD与挥发油的比例、包合温度和β-CD的质量分数为影响因素,以含油率和包合率的综合评分为评价指标,考察BoxBehnken响应面法优化的包合工艺;采用高效液相色谱(high performance liquid chromatography,HPLC)测包合物中的胡薄荷酮含量;傅里叶变换红外光谱(fouriertransforminfrared spectroscopy,FTIR)对包合物进行表征。结果:冷冻干燥法制备的包合物收率更高,平均收率为97.6%。高速剪切法制备的含油率和包合率较高,与搅拌法相比分别高出约3%和19%;包合物的最佳制备条件为:β-CD与挥发油比例为9:1(g/mL),包合温度为55℃,β-CD的质量分数为17%。在此条件下,挥发油含油率为10.9%,挥发油包合率为97.6%,综合评分为99.7,RSD值为1.59%,优化的工艺稳定可行;通过HPLC测得包合...  相似文献   

17.
以羟丙基-β-环糊精(HP-β-CD)为主体,采用冷冻干燥法制备水溶性良好的桑色素/HP-β-CD包合物。根据相溶解法研究了主客体之间的包合作用,并利用扫描电子显微镜(SEM)、粉末X射线衍射谱图(XRD)表征了包合物形成。此外,还通过差示扫描量热法(DSC)、热重分析(TG)及光稳定性分析的方法探究了包合前后桑色素光、热稳定性的变化。实验表明:桑色素与HP-β-CD形成了摩尔比1∶1的包合物,缔合常数为833(mol/L)-1。包合后桑色素的水溶性得到提升,在加入了8×10-3mol/L的HP-β-CD后,其溶解度提升了7倍。此外,经包合后的桑色素光、热稳定性也到提升,热分解温度从294℃提升至341℃,在300 min内的光稳定性也由75.2%提升至82.7%。这为桑色素作为食品添加剂在储存及使用过程中稳定性的提升提供了重要的帮助。  相似文献   

18.
为改善乳酸链球菌素(Nisin)的水溶性,采用饱和水溶液法,用β-环糊精(β-cyclodextrinβ-CD)对其进行包合。通过正交实验得到其最优条件为pH=3,摩尔比Nisin∶β-CD=1∶2,包合温度40℃,此时Nisin最优包合率达到34.46%。傅里叶变换红外光谱分析与差式扫描量热分析表明,Nisin和β-CD形成包合物,结构发生变化。在抑菌实验中,Nisin/β-CD包合物对金黄色葡萄球菌和枯草芽孢杆菌的抑菌活性与Nisin相比无显著性差异。  相似文献   

19.
采用分子对接和相溶解度结合的方法研究不同环糊精(cyclodextrin,CD)与光甘草定(glabridin,GLD)之间的包合能力,筛选出适宜包合GLD的CD;制备GLD/CD固体包合物,考察不同干燥方法、不同投料比对固体包合物的包合率、载药量和溶解度的影响;通过扫描电子显微镜、差示扫描量热法、傅里叶变换红外光谱法和分子对接技术分别对包合物的形貌、包合物中GLD的存在形式、GLD与CD的相互作用和空间构象进行研究;采用体外溶出实验考察GLD在包合前后溶出特性的变化;采用噻唑蓝法比较GLD及其包合物对人肝癌细胞株(HepG-2)细胞增殖的抑制作用。结果表明:多种CD都能与GLD形成物质的量比1∶1的包合物,其中2-磺丁基-β-环糊精(2-sulfobutyl-β-cyclodextrins,2-SBE-β-CD)包合GLD的能力优于其他CD及其衍生物;不同制备方法制备的GLD/2-SBE-β-CD固体包合物的包合率和载药量均无显著差异,但包合物的水溶性有一定差异。适当提高GLD与2-SBE-β-CD物质的量比,包合率虽有一定程度下降,但可显著提高载药量。GLD与2-SBE-β-CD物...  相似文献   

20.
采用荧光光谱法进行β-环糊精(β-cyclodextrin,β-CD)、洛伐他汀(Lovastatin,也称莫那克林K:Monacolin K,MK)包合物的荧光光谱特征,对包合体系的影响因素缓冲液体积温度、时间、β-CD浓度作相应考察;通过共沉淀法制备了β-CD-MK包合物,并通过高效液相法和荧光光谱增强法作了表征分析。结果表明,荧光检测时最佳发射波长EX=225 nm,激发波长EM=333 nm。β-CD-MK的包合过程是以物质的量比1∶1的形式形成,由Benesi-Hildebrand的双倒数法求得包合常数K=538.50 L/mol(25℃),进而求得包合过程中的其他热力学常数。该反应为放热自发过程。鉴于在包合体系过程中环糊精的加入能显著提高MK的荧光值,一个简单、快速以及高灵敏度测定MK含量的方法被开发,对比传统的高效液相法,两者的方法学考察RSD均≤5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号