首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Herein we report the development of a simple, rapid, homogeneous, and sensitive detection system for DNA based on the scattering properties of silver-amplified gold nanoparticle probes. The assay uses DNA-functionalized magnetic particle probes that act as scavengers for target DNA, which can be collected via a magnetic field. Once the DNA targets are isolated from the initial sample, they are sandwiched via hybridization by a second set of probes. The latter probes are 13-nm gold nanoparticles modified with a different target complementary DNA. Excess probes are removed through repetitive washing steps. The gold particles are dispersed in solution by dehybridization, corresponding to an assumed 1:1 ratio with the target DNA. Electroless deposition of silver on the surface of the gold probes results in particle growth, which increases their scattering efficiency with time. The scattering efficiency and the extinction signatures of the particle sizes are monitored as a function of time and correlated with target concentration. The limit of detection for this novel assay was determined to be 10 fM.  相似文献   

2.
Use of nanodiamonds (NDs) as nontoxic nanoparticles for biological imaging, sensing, and drug delivery is expanding rapidly. The interest in NDs is triggered by their unique combination of optical properties. ND can accommodate nitrogen-vacancy color centers which provide stable fluorescence without photobleaching or photoblinking and their electronic structure is very sensitive to magnetic and electric fields. The limited options to control ND properties during synthesis or by direct surface functionalization leave room to be improved upon by employing surface coatings engineered precisely for a particular application. The major disadvantages of unmodified NDs are their limited colloidal stability and tendency to non-specifically adsorb biomolecules. This review aims to summarize recent advances in coating NDs (namely with silica and polymer shells), which addresses these disadvantages and enables the use of NDs in biological applications such as targeting of specific cells, drug delivery, and biological imaging.  相似文献   

3.
4.
One of the critical problems in bladder cancer(BC)management is the local recurrence of disease.However,achieving the accurate delineation of tumor margins intr...  相似文献   

5.
Silica nanoparticles (SiNPs) have been widely engineered for biomedical applications, such as bioimaging and drug delivery, because of their high tunability, which allows them to perform specific functions. In this review, we discuss the functionalization and performance of SiNPs for nucleic acid delivery. Nucleic acids, including plasmid DNA (pDNA) and small interfering RNA (siRNA), constitute the next generation molecular drugs for the treatment of intractable diseases. However, their low bioavailability requires delivery systems that can circumvent nuclease attack and kidney filtration to ensure efficient access to the target cell cytoplasm or nucleus. First, we discussed the biological significance of nucleic acids and the parameters required for their successful delivery. Next, we reviewed SiNP designing for nucleic acid delivery with respect to nucleic acid loading and release, cellular uptake, endosomal escape, and biocompatibility. In addition, we discussed the co-delivery potential of SiNPs. Finally, we analyzed the current challenges and future directions of SiNPs for advanced nucleic acid delivery.  相似文献   

6.
The simultaneous entrapment of biological macromolecules and nanostructured silica-coated magnetite in sol-gel materials using a reverse-micelle technique leads to a bioactive, mechanically stable, nanometer-sized, and magnetically separable particles. These spherical particles have a typical diameter of 53 +/- 4 nm, a large surface area of 330 m(2)/g, an average pore diameter of 1.5 nm, a total pore volume of 1.427 cm(3)/g and a saturated magnetization (M(S)) of 3.2 emu/g. Peroxidase entrapped in these particles shows Michaelis-Mentan kinetics and high activity. The catalytic reaction will take place immediately after adding these particles to the reaction solution. These enzyme entrapping particles catalysts can be easily separated from the reaction mixture by simply using an external magnetic field. Experiments have proved that these catalysts have a long-term stability toward temperature and pH change, as compared to free enzyme molecules. To further prove the application of this novel magnetic biomaterial in analytical chemistry, a magnetic-separation immunoassay system was also developed for the quantitative determination of gentamicin. The calibration for gentamicin has a working range of 200-4000 ng/mL, with a detection limit of 160 ng/mL, which is close to that of the fluorescent polarization immunoassay (FPIA) using the same reactants.  相似文献   

7.
Using the covariant electromagnetic Casimir effect (recently introduced for real conducting cylindrical shells) 1 Razmi, H and Fadaei, N. 2009. Nucl. Phys. B, 814: 582593.  [Google Scholar] (Razmi, Fadaei. Nucl. Phys. B 2009, 814, 582), the Casimir force experienced by a spherical shell, under Dirichlet boundary condition, is calculated. The renormalization procedure is based on the plasma cut-off frequency for real conductors. The real case of a gold (silver) sphere is considered and the corresponding electromagnetic Casimir force is computed. In the covariant approach, there is no decomposition of fields to TE and TM modes; thus, we do not need to consider the Neumann boundary condition in parallel to the Dirichlet problem and then add their corresponding results.  相似文献   

8.
《Composite Structures》1993,25(1-4):295-303
The aim of the present paper is to discuss possible failure modes encountered in the analysis of multilayered laminated spherical shells having different shallowness parameters and subjected to external pressure. Two various approaches are proposed: the first based on the global buckling analysis and local determination of FPF for each individual layer in a laminate and the second postulating global investigations of both buckling as well as failure (in the sense of LPF) phenomena in laminated structures. The intersection of two curves corresponding to bifurcation buckling and breaking of fibres forms the limit load carrying capacity curve for the analysed shells. The first part of the work is devoted to the analytical prediction of the LLCC curves. Next, the theoretical results are compared with the numerical ones obtained with the use of strict geometrically nonlinear formulation for composite shells. Various types of materials are analysed herein, i.e. both unidirectional as well as woven roving composite materials. The analysis includes also some remarks dealing with the possibility of composite topology optimization in order to obtain the maximal LLCC.  相似文献   

9.
A facile biomolecule-assisted hydrothermal route followed by calcination has been employed for the preparation of monoclinic yttrium oxysulfate hollow spheres doped with other rare-earth ions (Yb3+ and Eu3+ or Er3+). The formation of hollow spheres may involve Ostwald ripening. The resulting hybrid materials were used for upconversion applications. The host crystal structure allows the easy co-doping of two different rare-earth metal ions without significantly changing the host lattice. The luminescent properties were affected by the ratio and concentration of dopant rare-earth metal ions due to energy transfer and the symmetry of the crystal field. The type of luminescent center and the crystallinity of samples were also shown to have a significant influence on the optical properties of the as-prepared products.  相似文献   

10.
We report on the creation of a high surface area, chemically selective material for the efficient adsorption of organophosphate and organophosphonate species. Using silica microparticles in conjunction with gold nanoparticles and surface modification chemistry, we have demonstrated a material with a binding constant for organophosphonates and organophosphates (OPPs) of K=2x10(6) M-1. The binding of OPPs to the modified gold nanoparticles appears as a spectral shift in the gold nanoparticle resonance. The sensitivity of this technique is limited by scattering losses of suspensions of the particles, and we report on how this sensitivity can be recovered to a significant extent by the use of solvents with a refractive index close to that of the silica particles.  相似文献   

11.
刘河江  邓华 《振动与冲击》2012,31(24):161-167
对54个双层球面网壳模型在罕遇地震下的弹塑性响应进行了计算。网壳模型中杆件截面按非地震工况下的满应力设计确定,并满足小震作用下的结构验算。计算时考虑网壳和下部结构的协同工作。杆单元采用能够同时考虑受拉屈服和受压屈曲的等效弹塑性滞回模型。根据计算结果,考察了网壳跨度、矢跨比、支座连接条件、下部结构形式以及地震波选取对结构塑性区域、塑性发展程度以及残余变形的影响。研究表明,罕遇地震下双层球面网壳的薄弱区域不全出现在临支座区域。当网壳受下部结构约束较强或跨度和矢跨比均较大时,发生残余塑性应变的杆件大多出现在网壳中间圈层区域。跨度、矢跨比和支座条件是影响塑性杆件分布和塑性应变大小的三个敏感因素。但所有模型并没有在罕遇地震下出现倒塌。  相似文献   

12.
为了更加深入研究单层球面网壳的动力失效。结合一个K6型单层球面网壳振动台试验,设计出一套描述单层球面网壳强振倒塌全过程的测试方法,包括:冲击法测试结构自振特性、低频调幅加载评估损伤程度和基频简谐加载监测结构失效过程。结合数据测量结果,描绘出结构倒塌过程的变形时程,分析结构的基频、阻尼及振型,记录杆件进入塑性的顺序,探索结构损伤演化的规律及倒塌破坏的机理。最后考虑材料的损伤,进行有限元模拟,验证了模拟方法的正确性。  相似文献   

13.
Boundary integral approaches, which are known for their mathematical sophistication and elegance as well as their ability to reduce the problem dimensions by one, suffer from drawbacks associated with their performance in the vicinity of the boundaries. Such behaviour is the result of the unavoidable, in most cases, discretization of the boundary on one hand, which consequently results in the reduction of the integral problem to an algebraic one, and of the tedious evaluation of singularities that are present in most kernels on the other. The sensitivity of solutions of shell problems using a special form of boundary integral method is studied. Such an approach hopes to achieve a better representation of the solution near the boundaries by utilizing fictitious surface lines to perform the kernel integrations. Lastly, the performance of the integral formulation is examined through some representative examples.  相似文献   

14.
Poly(pyrrole) hollow spherical nanocapsules (HSNCs-PPy) were prepared and used as an efficient support matrix to PtRu nanoparticles. γ-Radiation was utilized to load PtRu nanoparticles into Ppy-HSNC matrix. The advantageous characteristics of HSNCs-Ppy/PtRu catalyst as a support matrix for loading PtRu catalysts are presented.  相似文献   

15.
PS/silica core/shell composites were synthesized by the modified Stöber method using polystyrene spheres and cetyltrimethylammonium bromide as dual templates under room temperature. The silicate species and the templates were self-assembled to form mesoporous silica shell on the surface of the PS spheres. Hollow silica spheres with mesoporous shell were obtained by removing the polymer core and the templates through calcination. The hollow silica spheres showed high specific surface area of 1099.5 m2/g and narrow pore size distribution centered at 2.31 nm.  相似文献   

16.
Summary The purpose of this paper is to obtain solutions for the displacement and stress field of two boundary-value problems, of practical importance, for finite plane deformations of compressible isotropic hyperelastic materials, of harmonic type, with elliptical boundaries. With the use of the asymptotic analysis and appropriate Laurent's series the solutions are obtained in the form of integral.  相似文献   

17.
18.
The potential of a nucleic acid-based optical bioprobe for environmental measurements and drug monitoring is described. The sensor employs the long-wavelength intercalating fluorophore TO-PRO-3 (TP3). Compounds that interact with the TP3-DNA complex are indirectly detected by a decrease in the fluorescence intensity. We found that the configuration and length of the DNA dramatically affected the intensity of the fluorescence emitted from the TP3-DNA complex. We compared nucleic acids from different sources and optimized the system for pBR322 plasmid DNA (4363 bp) digested by HindIII restriction endonuclease. This endonuclease has a single recognition site in plasmid pBR322. In the proposed method, we attempt to combine broad-range detection with rapid and simple operation. A fiber-optic capillary fluorescence system was used to analyze toxic aromatic amines, antibiotics, and several kinds of antitumor drugs, using small amounts of sample, down to 10 muL, with a sensitivity comparable to that of current electrochemical methods. The detection limit can be as low as a few ppb or submicromolar. This approach is useful for routine screening in environmental monitoring or for controlling cytotoxic drug administration. The ease of operation and the rapid response allow high-throughput screening.  相似文献   

19.
A polymeric microfluidic device for solid-phase extraction (SPE)-based isolation of nucleic acids is demonstrated. The plastic chip can function as a disposable sample preparation system for different biological and diagnostic applications. The chip was fabricated in a cyclic polyolefin by hot-embossing with a master mold. The solid phase consisted of a porous monolithic polymer column impregnated with silica particles. The extraction was achieved due to the binding of nucleic acids to the silica particles in the monolith. The solid phase was formed within the channels of the device by in situ photoinitiated polymerization of a mixture of methacrylate and dimethacrylate monomers, UV-sensitive free-radical initiator, and porogenic solvents. The channel surfaces were pretreated via photografting to covalently attach the monolith to the channel walls. The solid phase prepared by this method allowed for successful extraction and elution of nucleic acids in the polymeric microchip.  相似文献   

20.
Reducing the side effects and improving the drug utilization are important work in anti-cancer drug delivery. In this paper, a novel dual-pH-sensitive drug delivery system was reported. Mesoporous silica nanoparticle (MSN) was applied to load anti-cancer drug doxorubicin hydrochloride (DOX) and was covered by mono-6-deoxy-6-EDA-β-cyclodextrine (β-CD-NH2) to block the pores through pH-sensitive boronate ester bond. And the carriers were then coated with methoxy poly(ethylene glycol) (mPEG) through another pH-sensitive benzoic imine bond. mPEG leaving studies, in vitro cellular uptake studies and the flow cytometry analysis, proved that carriers was “stealthy” at pH 7.4, but could be “activated” for cytophagy by cancer cells in weakly acidic tumor tissues (pH 6.5) due to the departure of mPEG. β-CD-NH2 leaving studies, the in vitro drug release studies and the in vitro cytotoxicity studies proved that boronate ester bond linking MSN and β-CD-NH2 was stable at both pH 7.4 and 6.5, but could be hydrolyzed intracellular to release DOX for cellular apoptosis due to the lower pH (5.0). In summary, the novel dual-pH-sensitive drug delivery system fabricated with a dynamic protection strategy should have great application potential in anti-cancer drug delivery fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号