首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of power flattening while maintaining a nearly constant keff over the core life is assessed for the Encapsulated Nuclear Heat Source (ENHS). A couple of approaches are considered — using different fuel dimensions and using different enrichment levels across the core. Three new cores with flattened power distribution are successfully designed: Design-I uses different fuel rod diameters but uniform fuel composition; Design-II uses different fuel enrichment in the radial direction but uniform fuel rod dimensions; Design-III is similar to Design-II but uses enrichment splitting also in the axial direction. Relative to the reference ENHS core, the BOL peak-to-average channel power ratio is reduced from 1.50 to 1.15, 1.22 and 1.15 and the average discharge burnup increases by 8.5%, 27.9% and 41.2% for, respectively, Design-I, -II and -III. The corresponding burnup reactivity swings over 20 years of full power operation are 0.37%, 0.52% and 0.60% relative to 0.22% of the reference design. Design-II and -III have a negative coolant expansion reactivity defect while in the reference design this defect is positive. The radial power flattening increases the reactivity worth of the peripheral absorbers of the three new designs while the central absorber reactivity worth is reduced but their sum is nearly maintained. The newly designed cores have slightly more positive coolant void reactivity worth than the reference ENHS core.  相似文献   

2.
The ENHS thermal hydraulic optimization code was modified and applied to search for the maximum attainable power from a wide range of ENHS design options subjected to the following constraints: maximum permissible hot channel coolant outlet temperature of 600 °C, clad inner temperature of 650 °C and primary coolant temperature rise of either 150 °C or 90% of the theoretical limit for accelerated corrosion rate. The TH optimization variables include the intermediate heat exchanger number of channels, channel width and elevation; diameter of the riser and diameter of a flow-splitting shroud in the riser. It was found possible to increase the attainable power from the nominal 125 MWth up to 311 MWth for the reference core, 400 MWth for a reference-like core having equilibrium composition fuel and 372 MWth for a flattened power core with 9 plutonium concentration zones. A power level exceeding 400 MWth may be achieved by flattening the power distribution of the equilibrium core or using nitride fuel with enriched nitrogen rather than metallic fuel. With forced circulation it is possible to operate the flattened power core at up to 532 MWth corresponding to 223 MWe.  相似文献   

3.
小型长寿命核能系统燃料物理性能的研究   总被引:1,自引:0,他引:1  
余纲林  王侃 《核动力工程》2007,28(4):5-8,38
本文在简要说明世界上小型长寿命核能系统研究现状的基础上,提出了使用钍-铀燃料和铅-铋冷却剂构造小型长寿命堆芯的设想,并为此进行了一系列燃料物理性能的研究.对于长寿命核能系统的堆芯物理设计,使反应性随燃耗变动最小非常重要,同时应该尽可能地提高堆芯的燃耗以满足长寿命运行的需求.本文使用MCNP和MCBurn程序详细计算分析了使用不同的初始驱动燃料、不同栅格、燃料成分和类型、富集度条件下,燃料栅元的燃耗反应性变化等性能,并对其进行了能谱、转换比、富集度变化等方面的分析,经过对比初步确定了使用钍-铀燃料构造长寿命堆芯的物理条件,并以此为起点构造出一个堆芯,计算给出了反应性空泡系数等安全参数.  相似文献   

4.
This paper presents the neutronic design of a liquid salt cooled fast reactor with flexible conversion ratio. The main objective of the design is to accommodate interchangeably within the same reactor core alternative transuranic actinides management strategies ranging from pure burning to self-sustainable breeding. Two, the most limiting, core design options with unity and zero conversion ratios are described. Ternary, NaCl-KCl-MgCl2 salt was chosen as a coolant after a rigorous screening process, due to a combination of favourable neutronic and heat transport properties. Large positive coolant temperature reactivity coefficient was identified as the most significant design challenge. A wide range of strategies aiming at the reduction of the coolant temperature coefficient to assure self-controllability of the core in the most limiting unprotected accidents were explored. However, none of the strategies resulted in sufficient reduction of the coolant temperature coefficient without significantly compromising the core performance characteristics such as power density or cycle length. Therefore, reactivity control devices known as lithium thermal expansion modules were employed instead. This allowed achieving all the design goals for both zero and unity conversion ratio cores. The neutronic feasibility of both designs was demonstrated through calculation of reactivity control and fuel loading requirements, fluence limits, power peaking factors, and reactivity feedback coefficients.  相似文献   

5.
Molten salt cooled Encapsulated Nuclear Heat Source (ENHS)-like reactors   总被引:1,自引:0,他引:1  
The feasibility of designing molten-salt cooled ENHS (Encapsulated Nuclear Heat Source)-like reactor cores with Pu15N-U15N nitride fuel for high temperature applications is assessed. The cores considered have uniform fuel composition and no blanket elements and solid reflectors. They are to operate for at least 20 effective full power years without refueling, without fuel shuffling and with burnup reactivity swing less than 0.52%. Three molten-fluoride-salts: NaF(57)-BeF2(43), 7LiF(66)-BeF2(34), and LiF(46.5)-NaF(11.5)-KF(42) are considered as the coolant and six materials: SS304, Hastelloy-N, HT-9, Mn-316SS, PCA, and SiC, are considered for the structures. It is found that, neutronically, ENHS-like cores can be designed for all combinations of molten-salt coolants and structural materials considered. Relative to the reference ENHS core, the molten-salt cooled cores require significantly tighter lattice, have softer neutron spectra, significantly more negative Doppler reactivity effect, much more positive coolant temperature and void reactivity effect and smaller reactivity worth of the control elements. Of the molten salts considered, LiF-NaF-KF offers the largest p/d ratio and is most suitable for natural circulation cooling.  相似文献   

6.
《Annals of Nuclear Energy》1999,26(17):1517-1535
The sensitivity of various safety parameters, affecting the reactivity insertion limits imposed by clad melting temperature for a typical pool type research reactor, have been investigated in this work. The analysis was done for low enriched uranium (LEU) core with scram disabled conditions. The temperature coefficients of fuel and coolant, void/density coefficient and βeff were individually varied and the reactor behavior for different ramp reactivity transients was studied. In this work ramp reactivity insertions from 1.6 to 2 $/0.5 s were selected and peak power, maximum fuel, clad and coolant temperatures were determined. Results show that peak power decreases with an increase in the Doppler coefficient of reactivity. However, it rises with an increase in the reactivity insertion. Core remains insensitive to the coolant temperature coefficient of reactivity for ramps in the range of 1.6–1.9/0.5 s. Peak power decreases with an increase in the void coefficient of reactivity (0.1 $/%void to 0.8 $/%void). With a decrease in the void coefficient of reactivity, the maximum fuel and clad temperatures show a non-linear rise. Power and temperature peaks in the transient are sensitive to the values of βeff. Finally, it can be concluded that LEU is a safe core due to its smaller βeff, larger Doppler coefficient and void coefficient of reactivity. It is inferred through this work that reactivity insertion limits of LEU core are quite insensitive to βeff, the Doppler coefficient and the coolant temperature coefficient of reactivity. They are highly sensitive to the change of the void coefficient of reactivity in the core.  相似文献   

7.
Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur.  相似文献   

8.
To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up,a tight ptich lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors.It is shown that the high conversion ratio and negative coolant void reactivity coefficient are challenges in the reactor core physics designs.Various techniques were proposed to solve these problems.In this work.a tight pitch lattice and mixed fuel assemblies pressured heavy water reactor concept was investigated.BY utilizing numerical simulation technique,it is demonstrated that reactor core mixed with Pu/U and Th/U assemblies can achieve high conversion ratio(0.98) ,long burn-up(60GWD/t)and negative void reactivity coefficients.  相似文献   

9.
Conceptual design of a Small-sized Reduced-Moderation Water Reactor (S-RMWR) core, which has the thermal output of 180 MW, the conversion ratio of 1.0 and the void reactivity coefficient of negative value, has been constructed. S-RMWR is a technology demonstration reactor which also conducts material and fuel testing for commercial use of Reduced-Moderation Water Reactor (RMWR) in large-scale power plants. It has a very tight triangular fuel rod lattice and a high coolant void fraction. The RMWR core axially has two short and flat uranium plutonium mixed oxide (MOX) regions with an internal blanket region in between, in order to avoid a positive void reactivity coefficient. The MOX regions are sandwiched between upper and lower blanket regions, in order to increase a conversion ratio.

In this small reactor core, leakage of neutrons is expected to be larger than in a large core. Therefore, a core design concept different from that for a large core is necessary. Core burnup calculations and nuclear and thermal-hydraulic coupled calculations were performed in the present study with SRAC and MOSRA codes. MVP code was also used to obtain control rod worth. Because of its large neutron leakage, keeping the void reactivity coefficient negative is easier for S-RMWR than RMWR. Thus, the heights of MOX region can be taller and the plutonium enrichment can be lower than in RMWR. On the other hand, to achieve the conversion ratio of 1.0, radial blanket and stainless steel reflector assemblies are necessary, whereas they are not needed for RMWR.  相似文献   

10.
The course of reactivity insertion in a pool type research reactor, with scram disabled under natural circulation condition is numerically investigated. The analyses were performed by a coupled kinetic–thermal–hydraulic computer code developed specifically for this task. The 10-MW IAEA MTR research reactor was subjected to unprotected reactivity insertion (step and ramp) for both low and high-enriched fuel with continuous reactivity feedback due to coolant and fuel temperature effects. In general, it was found that the power, core mass flow rate and clad temperature under fully established natural circulation are higher for high-enriched fuel than for low enriched fuel. This is unlike the case of decay heat removal, where equal clad temperatures are reported for both fuels. The analysis of reactivity represented by the maximum insertion of positive reactivity ($0.73) demonstrated the high inherent safety features of MTR-type research reactor. Even in the case of total excess reactivity without scram, the high reactivity feedbacks of fuel and moderator temperatures limit the power excursion and avoid consequently escalation of clad temperature to the level of onset of nucleate boiling and sub-cooled void formation. The code can also be modified to provide an accurate capability for the analyses of research reactor transients under forced convection.  相似文献   

11.
An inherently safe core concept with metallic fuel for sodium cooled fast reactor is proposed that has a negative void reactivity at the loss of coolant events without scram as well as a small excess reactivity during the operation cycle. The relationship of sodium void reactivities and burn-up reactivities to different core configurations has been studied quantitatively to clarify the core concept for large metallic fuel reactors. It has shown that the sodium void reactivity is greatly dependent on the core shapes while the excess reactivity is on the fuel compositions. It has also indicated that the core configuration that enables to enhance the neutron streaming through the region above the active core at coolant voiding is most effective to decrease sodium void reactivity.

A 3000 MWt core composed of the flat inner core and annular outer core where the fuel volume fraction is relatively high and the sodium plenum is placed just above the active core region has been selected as a candidate core.

The maximum excess reactivity of the candidate core at UTOP is about 0.4 $ and it can be reduced to approximately zero by power or inlet temperature adjustment during the operation cycle, meanwhile the sodium void reactivity is as low as -1.3 $ in negative that is enough to prevent ULOF sequences.  相似文献   


12.
提出超临界水混合堆快谱区多层燃料组件设计方案。用MCNP与STAFAS程序对多层燃料组件进行初步的中子物理与热工水力性能分析,同时对组件结构参数(栅距与棒径比P/D)进行敏感性研究。结果表明:快谱多层燃料组件设计不仅能够实现核燃料的增殖,且可获得较大的负冷却剂温度反应性系数与燃料温度反应性系数;减小P/D均可提高燃料的转换比,但较小P/D会导致核热点因子增大。适当调整组件裂变区燃料富集度可有效改善组件裂变区轴向功率不均匀性,降低核热点因子。  相似文献   

13.
Light water reactor (LWR) technology is nowadays the most successful commercial application of fission reactors for the production of electricity. However, in the next few years, nuclear industry will have to face new and demanding challenges: the need for sustainable and cheap sources of energy, the need for public acceptance, the need for even higher safety standards, the need to minimize the waste production are only a few examples. It is for these very reasons that a few next generation nuclear reactor concepts were selected for extensive research and development; super critical water reactors are among them. The use of a supercritical coolant would allow for higher thermal efficiencies and a more compact plant design, since steam generators, or steam separators and driers would not be needed, hence achieving a better economy. Moreover, because of the high heat capacity of supercritical water, relatively less coolant would be needed to refrigerate the reactor, therefore the feasibility to design a water cooled fast reactor: the supercritical water fast reactor (SCFR). This system presents unique features combining well-known fast and light water reactor characteristics in one design (e.g. a tendency to a positive void reactivity coefficient together with loss of coolant accident – LOCAs as a design basis accident). The core is in fact loaded with highly enriched MOX fuel (average plutonium content of 23%), and presents a peculiar and significant geometrical and material heterogeneity (use of radial and axial blankets, solid moderator layers, 12 different enrichment zones). The safety analysis of this very complex core layout, together with the optimization of the void reactivity effect through core design, is the main objective of this work.  相似文献   

14.
《Annals of Nuclear Energy》2007,34(1-2):83-92
A renewed interest has been raised for liquid-salt-cooled nuclear reactors. The excellent heat transfer properties of liquid-salt coolants provide several benefits, like lower fuel temperatures, higher average coolant temperature, increased core power density and better decay heat removal, and thus higher achievable core power. In order to benefit from the on-line refueling capability of a pebble bed reactor, the liquid salt pebble bed reactor (LSPBR) is proposed. This is a high temperature pebble bed reactor with a fuel design similar to existing HTRs, but using a liquid-salt as coolant. In this paper, the selection criteria for the liquid-salt coolant are described. Based on its neutronic properties, LiF–BeF2 (flibe) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic thermal-hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperature distribution. Calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined.  相似文献   

15.
Design and safety aspects of long-life small safe fast reactors using liquid lead or lead-bismuth coolant with metallic or nitride fuel are discussed. Neutronic analyses are performed to investigate the effect of core height to diameter ratio (H/D) on design performance of the proposed reactors. All reactors are subjected to the constraint of 12 years operation without refueling and shuffling with constant 150 MWt reactor power and also to the requirement of maximum excess reactivity during burnup to be less than 0.1%Δk. The results show that the pancake design with H/D of ?2/3 gives the most negative coolant void coefficient under the requirements for excess reactivity. Modified designs with the central region axially fulfilled with fertile material are proposed to improve the coolant void coefficient. Thermal-hydraulic analysis results show the possibility to operate the reactors up to the end of life without changing their orifice pattern, necessary pumping power for the proposed design smaller than the conventional large sodium cooled FBR, and the natural circulation contribution of 25–40% at the normal operating condition. The reactivity feedback coefficients are also estimated and appeared to be negative for all the components including the coolant density coefficient.  相似文献   

16.
Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than −30 pcm.  相似文献   

17.
The performances of a light water cooled thorium breeder reactor have been investigated. A feasible region of fresh fuel enrichment and moderator to fuel ratio (MFR) is found to satisfy the constrains of criticality, breeding, and negative void coefficient for several burnups of discharged fuel. The equilibrium fuel cycle burnup calculation has been performed which is coupled with the cell calculation. The MFR is changed to investigate its effect to the breeding capability and void reactivity coefficient profile for different average discharged burnups. For moderated cases, the conversion ratio (CR) decreases with increasing burnup and MFR. The ratio of fissile inventory in equilibrium core to the initial fissile loading (FIR) has the maximum value at certain burnups depending on the MFR and its value increases with the decreasing MFR. Considering to the breeding capability of the reactor, for burnups of equal to 30 GWd/t or higher, the MFR ≤ 0.3 is needed. For the larger MFR and lower burnups, the void reactivity coefficient becomes more negative with an increasing void fraction. The most negative value of the void reactivity coefficient is obtained at MFR = 0:3.  相似文献   

18.
《Annals of Nuclear Energy》2001,28(9):831-855
For a metallic fuel liquid metal fast breeder reactor, we studied a core concept for improving the Doppler coefficient and the sodium void reactivity without much sacrificing the breeding ratio and the burnup reactivity loss. In the concept, several ordinary fuel pins in all fuel assemblies of a core are substituted by pins containing only zirconium hydride (ZrH). A parametric survey for the ZrH fraction from about 1 to about 5% was performed in this study to investigate the reactivity coefficients and the associated demerits in order to search the optimum fraction of ZrH. The metallic fuel core containing about 3% of ZrH showed the good results for all parameters. Following the parametric study, the effect of hydrogenous material in a metallic fuel core was experimentally confirmed. Doppler reactivity, sodium void reactivity and sample reactivity worths of plutonium and B4C were measured in a series of critical experiment at FCA of JAERI. The experimental results showed that the hydrogenous material significantly improved the Doppler and the sodium void reactivities. Analysis of experimental results was performed to check the applicability of the present design codes for a fast reactor with hydrogenous materials.  相似文献   

19.
The IAEA’s reference research reactor MTR-10 MW has been modeled using the code MERSAT. The developed MERSAT model consists of detailed representation of primary and secondary loops including reactor pool, bypass, main pump, heat exchanger and reactor core with the corresponding neutronics and thermalhydraulic characteristics. Following the successful accomplishment of the steady state operation at nominal power of 10 MW, reactivity insertion accident (RIA) for three different initial reactivity values of $1.5/0.5 s, $1.35/0.5 s and $0.1/1.0 s have been simulated. The predicted peaks of reactor power, hot channel fuel, clad and coolant temperatures demonstrate inherent safety features of the reference MTR reactor. Only in case of the fast RIA of $1.5/0.5 s, where the peak power of 133.66 MW arrived 0.625 s after the start of the transient, the maximum hot channel clad temperature arrives at the condition of subcooled boiling with the subsequent void formation. However, due to the strong negative reactivity feedback effects of coolant and fuel temperatures the void formation persists for a very short time so that thermalhydraulic conditions remained far from exceeding the safety design limits of thermalhydraulic instability and DNB. Finally, the simulation results show good agreement with previous international benchmark analyses accomplished with other qualified channel and thermalhydraulic system codes.  相似文献   

20.
PASCAR is a 100 MWt/35 MWe lead-bismuth-cooled small modular reactor which requires no on-site refueling and well suits to be used as a distributed power source in either a single unit or a cluster for electricity, heat supply, and desalination. This paper includes both steady-state and transient performance evaluations for neutronics and thermal-hydraulics. Through design optimization studies for minimizing a burn-up reactivity loss, the metallic fuels-loaded core was designed with less than 1$ reactivity swing over 20-year cycle. A radial peaking power location shows the slow inward migration from outer enrichment zones while maintaining peaking factor within 1.35, reducing radiation damage and corrosion duty of high temperature environments. Equipped with coolant flow path large enough to ensure low pressure drop, this reactor is intended to operate by only natural circulation of chemically inert coolant within relatively low temperature range, 320-420 °C. Peak outlet temperature is nearly 450 °C where an Al-containing duplex cladding has sufficient corrosion resistance. Despite of 50% decrease of fuel thermal conductivity after swelling, inherent negative reactivity feedback and passive decay heat removal capability could secure an ample safety margin of peak fuel centerline temperature in tow safety analyses, unprotected transient overpower and unprotected loss of heat sink. The likelihood of loss of coolant, loss of flow, and local blockage is virtually eliminated by employing respectively a double-walled vessel, pump-less cooling, and cross-flow allowed open square assemblies. Simple fabrication, modular construction, and long burning cycle would compensate for economic disadvantages over smaller power and lower temperature than those of conventional fast reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号